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Preface

This book is an outgrowth of courses in plasma physics which I have taught at Kiel
University for many years. During this time I have tried to convince my students
that plasmas as different as gas dicharges, fusion plasmas and space plasmas can be
described in a unified way by simple models.

The challenge in teaching plasma physics is its apparent complexity. The wealth
of plasma phenomena found in so diverse fields makes it quite different from atomic
physics, where atomic structure, spectral lines and chemical binding can all be
derived from a single equation—the Schrödinger equation. I positively accept the
variety of plasmas and refrain from subdividing plasma physics into the traditional,
but artificially separated fields, of hot, cold and space plasmas. This is why I like
to confront my students, and the readers of this book, with examples from so many
fields. By this approach, I believe, they will be able to become discoverers who can
see the commonality between a falling apple and planetary motion.

As an experimentalist, I am convinced that plasma physics can be best understood
from a bottom-up approach with many illustrating examples that give the students
confidence in their understanding of plasma processes. The theoretical framework
of plasma physics can then be introduced in several steps of refinement. In the end,
the student (or reader) will see that there is something like the Schrödinger equation,
namely the Vlasov-Maxwell model of plasmas, from which nearly all phenomena
in collisionless plasmas can be derived.

My second credo as experimentalist is that there is a lack of plasma diagnostics
in many textbooks. We humans have only an indirect experience of plasmas, we
cannot touch, hear, smell or taste plasma. Even the visual impression of a plasma is
only the radiation from embedded atoms. Therefore, we must use indirect evidence
to deduce plasma properties, like density, temperature and motion. Each time my
students have grasped the principle of a plasma process, I ask what we can learn
about the plasma by studying this process.

In preparing this book, I have been supported by many colleagues. My spe-
cial thanks go to John Goree, Thomas Klinger and André Melzer for many fruit-
ful discussions which led to the concept of this book and for critically reading
selected chapters. Holger Kersten commented on Chap. 11 and permitted pho-
tographing some of his gas discharges. Many examples in this book were taken
from papers published together with my PhD students and Post-Docs, which I
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gratefully acknowledge (in alphabetical order): Günther Adler, Oliver Arp, Diet-
mar Block, Rainer Flohr, Franko Greiner, Knut Hansen, Axel Homann, Markus
Klindworth, Gerd Oelerich-Hill, Markus Hirt, Iris Pilch, Volker Rohde, Christian
Steigies, Thomas Trottenberg and Ciprian Zafiu. Special thanks go to John Goree
and Vladimir Nosenko for the fruitful cooperation at The University of Iowa during
my sabbatical leaves in 2001 and 2005. Many recent results were obtained from
collaborations within the Transregional Collaborative Research Centre TR-24 Fun-
damentals of Complex Plasmas. My special thanks go to Michael Bonitz and his
group.

Several colleagues made their original data available: I thank Tom Woods and
Rodney Viereck for their efforts in providing the WHI Solar Irradiance Reference
Spectrum, and Stephan Bosch who made his fit functions for the fusion cross sec-
tions and fusion rates accessible. Horst Wobig provided historic data from the stel-
larators WIIa and W7-AS. Matthias Born informed me about the mercury problem
in high-pressure lamps. Permission to reproduce figures were given by André Bou-
choule, John R. Brophy, David Criswell, Fabrice Doveil, John Goree, Greg Heb-
ner, Noah Hershkowitz, Rolf Jaenicke, John Lindl, Jo Lister, Salvatore Mancuso,
Richard Marsden, Bob Merlino, Gregor Morfill, Jef Ongena, and Steven Spangler.
Our librarian, Frank Hohmann, was indispensible in retrieving rare literature.

The following institutions gave permission to use informations from their web-
sites: NASA Hubble Heritage Team, NASA/JPL-Caltech, NASA/SOHO, NASA/
TRACE, EFDA-JET, ITER Organization and NIF/LLNL. IPP/MPG kindly granted
permissions to use figures of the Wendelstein 7-A and 7-X stellarators.

Kiel, Germany Alexander Piel
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Chapter 1
Introduction

“Begin at the beginning”, the King said gravely, “and go on
till you come to the end; then stop.”

Lewis Carroll, Alice in Wonderland

In this chapter we take a short tour through the history of plasma physics and make
the reader acquainted with natural plasmas on the grand scale of the solar system,
cold plasmas on the small scale of discharges, and with the hottest plasmas produced
by man in experiments on controlled nuclear fusion.

In physics, the word plasma1 designates a fully or partially ionized gas consist-
ing of electrons and ions. The term plasma was introduced 80 years ago by Irving
Langmuir (1881–1957) [1] to describe the charge-neutral part of a gas discharge. As
his co-worker Harold M. Mott-Smith recollected later [2], “[Langmuir] pointed out
that the ‘equilibrium’ part of the discharge acted as a kind of sub-stratum carrying
particles of special kinds, like high-velocity electrons from thermionic filaments,
molecules and ions of gas impurities. This reminds him of the way blood plasma
carries around red and white corpuscles and germs.” This shows that the relationship
of Langmuir’s choice of name with blood plasma was intentional.

David A. Frank-Kamenezki identified plasma as the fourth state of matter [3].
This view, on the one hand, alludes to the four elements of pre-Socratic Greek phi-
losophy, Earth (solid), Water (liquid), Air (gaseous) and Fire. On the other hand,
the ideas on a fourth state of matter go back to Michael Faraday (1791–1867), who,
in 1809, speculated about a radiant state of matter he associated with the luminous
phenomena produced by electric currents flowing in gases.

From a phenomenological point of view, the identification of plasma as a new
state of matter can be justified because the splitting at high temperature of neutral
atoms into electrons and ions is associated with a new energy barrier, the ionisation
energy. Today we know that plasma is not only the hot, disordered state of mat-
ter described above. Rather, we have learned during the last 20 years that plasma
systems can attain gaseous, liquid and even solid phases.

1 The Greek verb πλάσσειν means: to form, to mould, to shape. The noun πλάσμα means figure,
shape, effigy.

A. Piel, Plasma Physics, DOI 10.1007/978-3-642-10491-6_1,
C© Springer-Verlag Berlin Heidelberg 2010
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The plasma state, as an electrically conductive medium, possesses a number of
new properties that distinguish it from neutral gases and liquids. Here, one can think
of the ragged shape of a lightning discharge or the magnetically confined plasma in
a solar prominence. Most of the visible matter in space is in the plasma state. This
is certainly true when we compare the mass of the stars with that of planets and dust
regions. To be honest, dark matter (if it exists!) may take the lead in the comparison
with plasmas. However, it is our human experience with the cold conditions on
planet Earth that gives us the impression of the first three states of matter being the
natural ones.

Our technical age is unthinkable without plasma. Plasma arc switches are used
in the distribution of electric energy; high-pressure lamps illuminate our streets and
serve as light sources in modern data projectors; fluorescent tubes light our offices
and homes; computer chips are etched with plasma technologies; plasma-assisted
deposition processes result in flat computer screens and large-area solar cells. The
future energy supply may benefit from electricity produced by controlled nuclear
fusion. These different phenomena can be described in a unified way by fundamental
concepts.

1.1 The Roots of Plasma Physics

Surprisingly, plasma science is an old discipline of physics, although it was only
named so in 1928. The roots of plasma physics are intimately related to the his-
tory of electricity [4]. Modern electricity was born in about 1600, when William
Gilbert (1544–1603) described triboelectricity. One generation later, Otto von Guer-
icke (1602–1686) invented the vacuum pump (in 1635), generated electricity with
a rotating sulphur sphere (in 1663), and discovered the corona discharge at sharp-
pointed tips. Another century later, in 1745, Ewald Georg von Kleist (1700–1748)
and independently, in 1746, Pieter van Musschenbroek (1692–1686) invented the
Leyden jar, a high-voltage capacitor. When such a Leyden jar produced a spark in
air, it sounded like a gun shot, from which the terminology gas discharge arose. In
the age of enlightenment systematic experiments were performed to study nature. In
the 1770s, the famous physicist Georg Christoph Lichtenberg (1742–1799), see Por-
trait in Fig. 1.1, built the largest high-voltage generator of his time, an electrophor,
that could produce more than 200,000 V. The traces of discharges on the surface
of his electrophor, known as Lichtenberg figures, established the link to lightning
discharges.

When high-current electric batteries became available, the electric arc was dis-
covered, in 1803, by Vasily V. Petrov (1761–1834) and independently by Humphrey
Davy (1778–1829). Such an electric arc forms when the contact between two carbon
electrode tips is opened while a strong current flows. In 1831, Michael Faraday, see
Portrait in Fig. 1.1, discovered electric glow discharges in rarefied gases and made
systematic investigations during the next 4 years. This field was further explored
by Julius Plücker (1801–1868), Johann Wilhelm Hittorf (1824–1914), and William
Crookes (1832–1919), who made experiments with such low-pressure discharges.
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Fig. 1.1 Georg Christoph Lichtenberg and Michael Faraday—early pioneers in gas discharge
physics

Several discoveries resulted from this research on gas discharges, such as cathode
rays by Hittorf, in 1869; X-rays by Wilhelm Conrad Röntgen (1845–1923), in 1895;
and finally the electron by Joseph John Thomson (1856–1940), in 1897. Nicola
Tesla (1856–1943), in 1891, started investigating electric discharges driven by high-
frequency electric fields. In this pre-historic era of plasma physics, it was found that
gas discharges involved the motion of electrons and positive ions, which represents
the electric current flowing in a gas.

The discovery of collective phenomena in gas discharges, which define the mod-
ern concept of a plasma, and their proper explanation by mathematical models was
left to the 20th century. The systematic investigation of the plasma state and the
formulation of general laws was founded in the work of Irving Langmuir and his
co-workers, during the 1920s, on gas-filled diodes [5], as well as by investigations
on gas discharges with cold and hot cathodes by Walter Schottky (1886–1976) [6].

In the 1930s, many groups started with systematic studies of the plasma state. The
textbooks by Alfred Hans von Engel (1897–1990) and Max Steenbeck (1904–1981)
[7] and by Rudolf Seeliger (1886–1965) [8], became early classics and were
extended by the review article by Mari Johan Druyvesteyn (1901–1995) and Frans
Michel Penning (1894–1953) on the mechanisms in low-pressure discharges [9].

A second pillar, on which today’s plasma physics rests, is radio science, which
deals with the propagation of electromagnetic waves in the ionosphere. This field
was pioneered by Edward V. Appleton (1892–1965) [10] who won a Nobel prize
in 1947, Sydney Chapman (1888–1970) [11], and Appleton’s colleagues at the
Cavendish Laboratory in Cambridge, John Ashworth Ratcliffe (1902–1987) [12]
and K. G. Budden (1915–2005) [13]. The art of predicting the conditions for short-
wave radio communications was developed by Karl Rawer (1913–2003) [14] and
others.

Since the mid-1950s, research on controlled nuclear fusion established the field
of hot-plasma physics. Scientific questions like confinement of hot plasmas by mag-
netic fields and plasma instabilities became important. Lyman Spitzer (1914–1997)
and Igor V. Kurchatov (1903–1960) laid the foundations of magnetically confined
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fusion plasmas. Progress in this field also cross-fertilized similar problems in solar
and magnetospheric physics. With the availability of high-power lasers, controlled
nuclear fusion was also attacked with the concept of inertial confinement. This field
was shaped by many researchers which cannot be individually listed here. The quest
for solving the energy problem of the 21st century remains the driving force behind
fusion research.

1.2 The Plasma Environment of Our Earth

We start our grand tour through natural plasmas in the solar system. The physics
of the Sun–Earth system is governed by many plasma processes and comprises
nuclear reactions in the Sun’s interior, plasma eruptions from the Sun’s surface,
a steady-state solar wind, and the interaction of the solar wind with the Earth’s
magnetosphere and the formation of an ionosphere.

1.2.1 The Energy Source of Stars

The most important plasma object in our space vicinity is the Sun, which provides
the thermal radiation that makes the Earth habitable. Because the Sun is our nearest
star, it is a well studied object and its inner mechanisms are well understood. The
Sun, and the stars in general, are examples for working steady-state fusion reactors
that convert protons to heavier elements and radiate the produced energy away. In
stars with about one solar mass, the proton-proton cycle burns hydrogen into helium
according to the main nuclear reaction chain

p + p → 2D + e+ + νe
2D + p → 3He

3He + 3He → 4He + 2p

In each cycle there is a resulting energy of 26.21 MeV, which is available as heat
while 0.51 MeV escape with the neutrino. The key features of the Sun are compiled
in Table 1.1.

Between 1920 and 1950, the understanding of the inner structure of stars has
grown in parallel with the development of plasma and nuclear physics. In the center
of a star, the high densities and temperatures are sufficient to ignite nuclear fusion
reactions. On the other hand, the produced energy keeps the interior hot to provide
the pressure that balances the weight of the outer layers and prevents the collapse
of the star. The transport of energy to the surface involves radiation and convection.
Star spectra give us information about the surface temperature and the chemical
composition of a stellar atmosphere, which are linked to the state of evolution of
this star. The plasma physics of stellar atmospheres can be found in classical astro-
physical textbooks, e.g. [15].
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Table 1.1 Characteristics of the Sun

Mass, m� 1.989 × 1030 kg
Radius 6.955 × 108 m
Pressure (center) 1.3 × 109 bar
Temperature (center) 15 × 106 K

(surface) 15,000 K
(corona) (1–2)×106 K
(prominences) (5,000–10,000) K

Luminosity 3.90 × 1026 W
Magnetic field (polar) ≈ 10−4 T

(prominences) ≈ 10−3–10−2 T
(sun spots) ≈ 0.3 T

Plasma density (corona) 1.7 × 1014 m−3

(prominences) (1016–1017) m−3

1.2.2 The Active Sun

Already in 1616, Galileo Galilei (1564–1642) had detected dark spots on the Sun.
Today, we know that these spots are the footpoints of strong magnetic fields. On
a smaller scale, magnetic dipolar structures appear where a plasma-filled magnetic
flux tube rises above the solar surface and forms so-called coronal loops. Figure 1.2
shows the light emission from coronal loops in the soft X-ray regime as observed by
the Transition Region and Coronal Explorer (TRACE) satellite. TRACE is a mission
of the Stanford-Lockheed Institute of Space Research and part of the NASA Small
Explorer program. The magnetic fields are produced by a dynamo mechanism that
takes its geometry and energy from the Sun’s differential rotation.

Fig. 1.2 Coronal loops filled with hot plasma that emits in the soft X-ray regime. Observed at
17.1 nm wavelength by the Transition Region and Coronal Explorer (TRACE) satellite. (Courtesy
NASA/TRACE)
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Our Sun is an active star. Solar prominences are huge magnetic structures that
separate from the solar surface and are filled with plasma. Prominences can last for
several days and demonstrate the co-existence of a plasma with a magnetic field.
Explosive emission of particles and radiation occurs in solar flares, which is the
process of destroying active coronal loops. Figure 1.3 shows the evolution of a flare
according to the Sweet-Parker model [16, 17]. The dipolar field of a coronal loop
is partially connected to the interplanetary field. The elongated field lines contain
magnetic energy, which can be released by reconnection of field lines. The plasma
trapped inside the magnetic field is accelerated by the contracting field lines.

The largest explosive events on the Sun are coronal mass ejections (CMEs),
which release on average 1.6 × 1012 kg of plasma moving at a speed between
(200–2700) km s−1. The frequency of CME events varies according to the 11-year
sunspot cycle with typically one event per day at solar minimum and 5–6 events dur-
ing solar maximum. As an example, the CME event of February 27, 2000 (during
solar maximum conditions) is shown in Fig. 1.4. The observation was made with
the Large Angle Spectrometric Coronograph (LASCO) aboard the SOHO satel-
lite.2 The central disk blocks direct light from the sun. The diameter of the sun
is indicated by the white circle. The plasma bubble released in this CME event did
not propagate towards the Earth. A new pair of satellites, NASA’s Solar TErres-
trial RElations Observatory (STEREO)3 was launched in 2006 to observe, in three
dimensions, plasma structures that may be heading towards the Earth. When such
plasma bubbles hit the Earth’s magnetosphere, magnetic storms can be triggered,
which may lead to disruptions in power line grids by large induced currents and can
damage communication satellites. CME’s and the associated high energy particles
are a major hazard for astronauts. The CME that hit the Earth on October 30, 2003,
expanded the auroral zone, which (in Europe) usually has a southern boundary in

N N S S SS N N
(a) (b) (c) (d)

Fig. 1.3 Development of a solar flare in the Sweet-Parker model. (a) The dipolar field of a coronal
loop connects to the interplanetary magnetic field. (b) By reconnection of antiparallel field lines
the stress of the field lines is released. (c, d) The relaxing magnetic field accelerates the trapped
plasma

2 see: http://lasco-www.nrl.navy.mil/
3 see: http://www.nasa.gov/mission_pages/stereo/main/index.html
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Fig. 1.4 Coronal mass ejection of February 27, 2000 as observed by the LASCO instrument aboard
the SOHO satellite. (Courtesy NASA/SOHO)

mid-Scandinavia at > 60◦ latitude, down to Lake Constance near the German–Swiss
border at 47◦ latitude.

1.2.3 The Solar Wind

The space between Sun and Earth is filled with the plasma of the solar wind. This is
a flow of charged particles from the Sun, whose existence was first conjectured, in
1908, by the Norwegian physicist Kristian Birkeland (1867–1917) [18]. Birkeland
also recognized that this solar wind must comprise both positive ions and negative
electrons. Ludwig Biermann, in 1951, inferred [19], that the pressure of the solar
radiation on the molecules in the comet tail is by far insufficient to explain why
comet tails always point away from the Sun. Rather, a solar corpuscle flow with
velocities of the order of 106 m s−1 was necessary to deflect the comet tail. Eugene
Parker [20] recognized that the solar magnetic field is “frozen” in the mass flow of
the solar wind—an effect from “magneto-hydrodynamics”, a novel concept intro-
duced by Hannes Alfvén (1908–1995). Although the mass flow of the solar wind is
radially outward, solar rotation shifts the footpoints of the particle flow azimuthally,
which transforms a radial beam into an Archimedian spiral (Fig. 1.5). Experimen-
tal evidence of the existence of the solar wind was given by Konstantin Gringauz
(1918–1993), who had designed the hemispherical retarding-potential ion detectors
aboard the Soviet moon probes Luna 1 and Luna 2, which were both launched in
1959 [21].

The quasistationary solar wind describes plasma streams whose sources on the
Sun exist for more than one day, often weeks and even months. There are two types
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400 km/s

Fig. 1.5 The sun rotation shapes beams of solar wind, which emerge from distinct spots, into an
Archimedian spiral. The motion of the solar wind is radially outward, but the magnetic field is
trapped in the spiral arms. The Earth orbit is indicated by the dashed circle

Fig. 1.6 The speed of the
solar wind observed by the
Solar Wind Observations
Over the Poles of the Sun
(SWOOPS) instrument
aboard the ULYSSES
spacecraft during its first
passage. (Reprinted from [22]
with kind permission from
Springer Science+Business
Media)

1994 1995

of plasma streams with distinct plasma properties, the slow solar wind with veloc-
ities below 450 km s−1 originating in the coronal streamer belt at low heliospheric
latitudes, and the fast solar wind with velocities between 700 and 800 km s−1 flow-
ing out of coronal holes at high heliospheric latitudes. These two types of solar

Table 1.2 Properties of the high-latitude solar wind [24] converted to conditions at 1 AU

Quantity Fast SW Slow SW

vSW 773 ≈ (300–500) km s−1

Proton density 2.47 × 106 (5–15) ×106 m−3

Proton temperature 1.86 × 105 K
Electron temperature 0.84 × 105 K
He++ ions/protons 0.044



1.2 The Plasma Environment of Our Earth 9

wind were detected by the ULYSSES4 spacecraft during its first passage of the
Sun (Fig. 1.6) [22, 23], when the 11-year solar activity cycle was at its minimum
(Table 1.2).

1.2.4 Earth’s Magnetosphere and Ionosphere

The interaction between the solar wind with the Earth gives rise to spectacular
plasma phenomena in Nature. The Earth is protected by its magnetic field against the
flow of energetic particles in the solar wind. Some of these particles can flow along
magnetic field lines and hit the upper atmosphere at polar latitudes, where they cause
the curtain-like aurora borealis or Northern Lights. These phenomena had already
fascinated the Norwegian polar researcher Fridtjof Nansen (1861–1930). Nansen
often illustrated his books with colored woodcuts displaying the aurora. Seen from
space, the Northern Lights are located in bands forming an auroral oval about the
magnetic North and South pole (see Fig. 1.7).

The magnetosphere is separated from the incoming solar wind by the bow shock.
The dipolar field of the Earth is dramatically distorted by the impinging momen-
tum flux of the solar wind and forms a long magnetotail on the night side (see
Fig. 1.8). The similarity of the aurora borealis with a gas discharge was already
recognized by another Norwegian physicist, Kristian Birkeland, who studied the
relationship between auroral activity with fluctuations of the Earth’s magnetic field.

a

b

Fig. 1.7 (a) Aurora borealis, woodcut by Fridtjof Nansen (1911). (b) Auroral oval centered about
the North magnetic pole as seen by the Dynamics Explorer 1 satellite (Courtesy NASA)

4 Named after the mythical Greek seafarer Ulysses.
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Fig. 1.8 The Earth’s dipolar magnetic field is deformed into an elongated magnetsphere by the
interaction with the solar wind

Active space research, beginning in the International geophysical year 1957, opened
the way to new discoveries. In 1958–1959, two toroidal belts of energetic particles,
ranging between 700 and 10,000 km altitude, were detected by James van Allen
(1914–2006) [25] in the Explorer I & III, and in the Pioneer IV rocket missions.
This inner belt and a second outer belt between 13,000 and 65,000 km altitude are
now known as the van Allen radiation belts. The inner belt is filled with protons of
≥ 100 MeV and electrons of hundreds of keV energy. It is believed that the pro-
tons result from the beta decay of neutrons that are produced by cosmic rays hit-
ting the upper atmosphere. The outer belt mainly contains energetic electrons of
(0.1–10) MeV energy, protons, alpha particles and O+ ions.

The ionosphere is that part of the upper atmosphere in which solar UV radiation
is absorbed by ionizing atoms and molecules. The nomenclature for the different
regions of the Earth’s neutral and ionized atmosphere is compiled in Table 1.3.

On their path from space into the atmosphere, the incoming UV photons expe-
rience an increasing density of atoms. The vertical structure of the atmosphere is
given by a hydrostatic equilibrium described by

− dp

dh
= nnmng, (1.1)

Table 1.3 The Earth’s atmosphere

Neutral atmosphere Altitude regime Ionized atmosphere Altitude regime

Exosphere > 500 km F-layer (120–500) km
Thermosphere (85–500) km E-layer (90–120) km
Mesosphere (45–85) km D-layer (50–90) km
Stratosphere (12–45) km
Troposphere (0–12) km
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where p = nnkBT is the gas pressure. For a region of constant temperature and
uniform gravitational acceleration, this gives an exponential decay with altitude

n(h) = n0 exp

(
−h − h0

H0

)
, (1.2)

where H0 = kBT (mng)−1 is the scale height. In Sidney Chapman’s model of the
ionospheric layers, the photoionization rate along the path of the UV flux at a given
wavelength first rises because of the increasing atom density, goes through a max-
imum, but eventually dies out because nearly all photons of that wavelength have
been absorbed.

This behavior can be seen in the electron density profile in Fig. 1.9a. There, the
ionospheric F-layer is shown over the author’s location. This density profile was
calculated from the International Reference Ionosphere [26] model (IRI-2007).5

The daytime profile for October 24, 2009 (2:00 pm local time) has a maximum
density of ≈ 6 × 1011 m−3 at 250 km altitude. In the F-layer, plasma is produced
by photoionization of atomic oxygen by extreme UV photons in the 10 – 100 nm
range. Note, that the maximum appears slightly above the rapid increase in atomic
oxygen density (dotted curve). At night (10:00 pm local time), the density maximum
is ≈ 1.4 × 1011 m−3 at a higher altitude of 330 km. This vertical shift of the maxi-
mum is caused by the higher recombination rates at low altitudes, i.e., electrons at
higher altitude have a longer time of survival after the production ended at sunset.

The E-layer between 90 and 120 km altitude is formed by photoionization of
molecular oxygen by radiation in the (100–150) nm range, and by soft X-rays of
(1–10) nm. The ion composition in the E-layer is mostly O+

2 and NO+, as shown

(a) (b)

Fig. 1.9 (a) The electron density profile in the daytime and nighttime ionosphere given by IRI-
2007 for the author’s location (54.3N, 10.1E). For comparison the profile of neutral oxygen atoms
from IRI-2007 is shown. (b) The ion composition in the ionosphere

5 http://iri.gsfc.nasa.gov/
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in Fig. 1.9b. At the mid-latitude location shown here, there is no clear separation
between E-layer and F-layer. The D-layer is produced by the hydrogen Lyman-α
line at 121.5 nm and by hard X-rays (λ < 1 nm).

1.3 Gas Discharges

Let us now switch to man-made cold plasmas that are produced by electric dis-
charges. This is the realm of applied plasma science, which comprises fluorescent
tubes, photographic flash tubes, plasma TVs, high-power arc lamps for data projec-
tors or street illumination, and many industrial applications like etching of silicon
wafers or silicon deposition on substrates for manufacturing solar cells and com-
puter displays. They are all driven by an applied direct current (dc), alternating cur-
rent (ac) or radio frequency (rf) voltage, which generates an electric gas breakdown
and sustains the discharge.

1.3.1 Lighting

Lighting is one of the traditional domains for plasma applications. Electric arcs in
high-pressure lamps are used for street lights and low-pressure discharges in fluo-
rescent tubes for office and domestic lighting. In Table 1.4 various light sources are
compared in terms of their efficacy given in lumens per watt electric input power.

Lumen is a unit to characterize the visible light flux Φv into the full solid angle
4π that originates from a radiated spectral power density S(λ), weighted by the
relative sensitivity V (λ) of the human eye,

Φv = 683
lm

W

780 nm∫
380 nm

S(λ)V (λ) dλ . (1.3)

A monochromatic source at the maximum of V (λ) at 555 nm would have the max-
imum possible efficacy of 683 lumens per watt. An important aspect for domestic
lighting is the color rendering index (CRI), which can reach a maximum of 100 for
faithful reproduction of colored objects.

The enormous energy saving of plasma-based lighting stems from the efficient
use of radiation within the range of spectral sensitivity of the human eye, as shown
in Fig. 1.10b. While the wide extent of the solar spectrum delivers light and heat for
maintaining our habitat, mimicking the solar spectrum by an incandescent light is
today a bad idea from an economic and environmental standpoint. While this text is
written, many countries have begun to phase out the production of general-purpose
incandescent lamps. High-tech incandescent lamps instead use the halogen cycle to
diminish blackening of the glass by evaporated tungsten and save heating power by
an internal coating that reflects the infrared part of the spectrum back to the filament.
The efficacy reaches nearly twice that of general-purpose lamps.
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Table 1.4 Comparison of the efficacy and colour rendering index (CRI) of various light sources

Lamp type lm/W CRI Source

General-purpose incandescent lamp 9–15 100 a
Low-voltage halogen 12–19 100 a
Halogen with internal reflective coating 17–24 100 a

Compact fluorescent lamp (stick) 46–61 82 a
Compact fluorescent lamp (spiral) 60–67 82 a

Light emitting diodes (warm tone) 66 90 b
Light emitting diodes (cool) 105 70 b

T8 tube with electronic ballast 80–100 80–89 c

High-pressure mercury lamp 65–85 25–50 d
High-pressure sodium lamp 90–135 15–25 d
Ceramic metal halide lamp 65–115 70 b
aJacob [27], bPhilips data sheet, cOsram data sheet, dReport [28]
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Fig. 1.10 (a) The spectrum of an incandescent lamp is represented by black-body radiation at T =
3000 K. The shaded rectangle marks the visible spectral range. (b) The spectrum of a fluorescent
tube with a modern tri-phosphor coating (solid line) in comparison with the eye-sensitivity curve
V (λ) (dashed line). (c) Compact fluorescent lamp

Most energy-efficient plasma-based light sources use the fact, that about 80% of
the electric power of a low-pressure discharge in mercury vapour can be transformed
to ultraviolet light, which can then be converted to visible light by fluorescent mate-
rials. Early fluorescent tubes used the mercury spectral lines at 435 nm and 546 nm
in combination with the fluorescence of a halophosphor coating of the inner tube
wall that contributed to the yellow and red part of the spectrum. Modern tri-phosphor
coatings, see Fig. 1.10b, are better targeted to the eye-sensitivity curve V (λ).
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For office lighting, the CRI should be greater than 80. For domestic applica-
tions, customers prefer values greater than 90. Light-emitting-diodes are an emerg-
ing technology that has just reached break-even with fluorescent lamps regarding
efficacy and color rendering and may overtake fluorescent lamps in some appli-
cations. This is true for back-lighting of computer screens and foreseeable for
domestic applications. For street lights, efficacy was formerly of higher priority
than color rendering. Nowadays, urban lighting is beginning to benefit both from
higher efficacy and better color rendering by replacing high-pressure mercury lights
by improved metal halide lamps. For high-power stadium lighting with more than
1 kW per luminaire there is presently no alternative to plasma lamps.

From an environmental point of view, the pros for a lighting technology based
on mercury lamps lie in its efficacy and the reduced carbon footprint, the cons in
the toxicity of mercury. The ban of mercury in plasma lamps for car headlights has
already stimulated alternative mercury-free plasma lightsources [29], which, in the
near future, may also replace high-pressure lamps for street lighting.

1.3.2 Plasma Displays

So far, technical discharges were still large objects with dimensions between sev-
eral centimeters and one meter. Most recently, plasmas with very small scales of
less than a millimeter became important. One well-known example are plasma dis-
plays. These are based on micro-discharges with sub-millimeter dimensions. The
principle of light generation in the three primary colors, red, green and blue, is a
plasma discharge that produces UV radiation, which in turn excites a phospor that
emits the desired spectrum. In this sense, the plasma display uses a similar chain of
processes as a fluorescent tube discharge. While mercury is the source of UV light
in fluorescent tubes, the filling gas in a plasma display is a mixture of neon and
xenon with xenon delivering the UV radiation. A section through a plasma display
cell is shown in Fig. 1.11.

The discharge cell with typical dimensions of 0.5 mm has a sandwich structure
with a front glass and back glass substrate, on which transparent conducting elec-

Fig. 1.11 A discharge cell in
a plasma display. The
conducting electrode layers
and the MgO coating are
transparent. The electrodes
on the front glass substrate
are actually oriented at right
angle to form an address
matrix in combination with
the bus electrode

back glass substrate

front glass substrate
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trodes are printed that form rows and columns of a display matrix. The cells can be
addressed by applying a voltage pulse that is applied between the address electrode
and bus electrode. After the discharge has fired a smaller voltage on a sustain elec-
trode maintains the discharge. The discharge electrodes are not in contact with the
plasma but embedded in a dielectric layer. Therefore, the discharge current is a dis-
placement current that flows only for a short period and generates a short discharge
flash. The number of subsequent flashes determines the brightness of that pixel.

The cathode of this discharge is made of a thin layer of magnesium-oxide. This
material has the unique property that one impinging ion creates more than 30 sec-
ondary electrons that maintain the discharge. In this way, the discharge cell can be
operated very efficiently at a very low discharge voltage (≈ 95 V). Neighboring
cells are separated by glass barrier-ribs. Three neighboring cells of different color
form a pixel.

1.4 Dusty Plasmas

So far we have discussed the elementary mechanisms in a gas discharge and the
way of their technical application. Let us now shortly digress to a field, where the
complexity of plasma systems is the driver of research.

Dust in space is the material from which stars and planets are formed. The huge
amount of dust in a galaxy can be seen in an edge-on view of the sombrero galaxy
M104 and the distribution in the spiral arms becomes evident from a face view of
the Whirlpool galaxy M51, as shown in Fig. 1.12. The collapse of a dust cloud, often
triggered by strong stellar winds from nearby star clusters or a supernova, leads to
the formation of newborn stars in protostellar disks.

In our planetary system, electrically charged dust is found in Saturn’s rings.
While the details of dust charging in the ring system are still under investigation,
the collective interaction of the dust can be directly observed. During the passage of
the Voyager 2 spacecraft in 1981, unexpected radial structures (spokes) were found
in the B-ring (Fig. 1.13), which appear dark in backscattered light [30].

Fig. 1.12 (left) The Sombrero galaxy M104, seen edge-on by the Hubble Space Telescope, reveals
huge amounts of dust in the galactic plane. (right) The Whirlpool galaxy M51 gives a face view
that displays the dust distribution in the spiral arms. (Courtesy NASA and Hubble Heritage Team)
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Fig. 1.13 Dark radial
“spokes” were observed in
Saturn’s B-ring during the
fly-by of the Voyager 2
spacecraft [30]. These
structures are attributed to a
collective motion of
electrically-charged fine dust
particles. (Courtesy
NASA/JPL-Caltech)

After passing Saturn, Voyager 2 observed the same structures as bright features
in forward scattered light. This is a clear hint that the spokes consist of micrometer-
sized dust. These spokes are typically 10,000 km long and 2000 km wide and do not
follow the Kepler motion of the ring particles.

One of the currently assumed models [31] assumes that the dust is electrostati-
cally levitated above the ring plane. An initial transient event, such as a meteoritic
impact or a high-energy auroral electron beam, could create a short-lived dense
plasma that charges the boulders in the main ring to a negative potential. Dust
grains on the surface of the boulder collect an extra electron and are repelled from
the surface. Subsequently they leave the dense plasma cloud and are found in the
ever-present background plasma environment. The spokes are now under detailed
investigation by the Cassini spacecraft, which is in an orbit about Saturn.

Fig. 1.14 Yukawa ball: a
three-dimensional plasma
crystal of charged dust
particles with unusual shell
structure. The image shows
the positions of the dust
particles obtained by
scanning videomicroscopy
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The field of dusty plasmas has grown rapidly since the 1990s. Dust charging,
interaction forces, wave phenomena and phase transitions were studied. Dusty plas-
mas in the laboratory showed new physics, like the formation of two-dimensional
[32–34] and three-dimensional plasma crystals [35] or spherical Yukawa balls [36],
see Fig. 1.14. The high attractivity of this field of investigations lies in the high
transparency of the dust clouds and the slow motion of the dust particles, which can
be traced with fast video cameras. This is one of the rare occasions, where plasma
phenomena can be studied by simultaneously observing the many-particle system
at the “atomic level”.

1.5 Controlled Nuclear Fusion

Our tour through plasma science finally returns to the hot plasmas of the stars. But
now we are interested how to mimic the conditions in the interior of stars by hot
plasmas confined in fusion reactors. Research on controlled nuclear fusion promises
an energy source that could provide the worlds growing energy demand in the 21st
century and beyond.

In the cold-war era after World War II, research on nuclear energy was done
within secret programs. In the United States, the astrophysicist Lyman Spitzer
(1914–1997) began building a stellarator device at Princeton University. Richard
F. Post (1918–) was setting up a mirror machine at the University of California’s
Livermore laboratory. In the Soviet Union, the tokamak concept was introduced by
Igor Tamm (1895–1971) and Andrei Sakharov (1921–1989). In 1956, the Soviet
research on controlled nuclear fusion was unilaterally disclosed to Western scien-
tists by Igor V. Kurchatov (1903–1960). In short time, the road to a peaceful use
of nuclear fusion energy opened in 1958 at the 2nd Atoms for Peace Conference in
1958, when scientists from around the world were allowed to share their results and
laid the foundation for “one of the most closely collaborative scientific endeavours
ever undertaken” [37]. The common goal of all these attempts is to use the energy
resulting from the fusion of deuterium and tritium nuclei to operate a power plant.
The reaction channels and associated energies are compiled in Table 1.5.

A significant yield of fusion reactions can only be expected at such kinetic ener-
gies of the fusion partners that overcome the Coulomb repulsion between the like-
charged nuclei. Figure 1.15 shows the fusion cross sections as a function of the par-
ticle energy in the center-of-mass system. The figure uses the tabulated values from
[38, 39]. The fusion reactions set in between 10 and 100 keV energy. Moreover, the
cross section for the D–T reaction is found, at the same energy, much larger than that
of the D–D or 3He–D reaction. This is the reason why all present experiments for
igniting a fusion reaction use D–T mixtures. Actual concepts for obtaining nuclear

Table 1.5 Fusion reactions of
the hydrogen isotopes

2D + 2D → 3T + p + 4.0 MeV
2D + 2D → 3He + n + 3.3 MeV
2D + 3T → 4He + n + 17.6 MeV
2D + 3He → 4He + p + 18.3 MeV
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Fig. 1.15 The cross section
for D–T, D–3He and D–D
fusion reactions as a function
of the center-of-mass energy.
The D–D cross section is the
sum of both reaction channels

fusion are either based on magnetically-confined hot plasmas in so-called tokamak
or stellarator devices, or on heating small pellets containing deuterium and tritium
with ultra-intense laser beams.

1.5.1 A Particle Accelerator Makes No Fusion Reactor

Why can’t we simply operate a particle accelerator as a fusion reactor? Obviously,
today it is no big technical problem to accelerate ions to (0.1–1) MeV. Let us assume
that we shoot a beam of tritium ions with the optimum energy into a solid target
of deuterium ice, which may be a cube of 1 cm edge length that contains roughly
5.4 × 1019 deuterium atoms (Fig. 1.16). The probability p of hitting one of these
target atoms is the ratio of the blocked area to the cross section of the cube, i.e.,
p = 2.7 × 10−4. This means, however, that 99.97% of the projectiles have not
performed a fusion reaction. Let us further assume that the tritium beam represents
an electric current of I = 1 A, which is quite substantial at 100 keV energy. Then
the cube is hit by dNT /dt = I/e = 6.3 × 1018 tritium ions per second (e is the
elementary charge). The product of this hit rate with the reaction probability and
the fusion energy of 17 MeV gives a respectable fusion power of 4.6 kW per cubic
centimeter. However, will this ion beam be able to penetrate a solid deuterium ice
cube? Unfortunately, no. The interaction of the tritium ion beam with the electrons

Fig. 1.16 Cartoon of the
deuterium ice-cube with an
impinging tritium ion beam

1cm

D2 ice

tritium beam
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of the densely packed deuterium atoms leads to a rapid energy loss, which is of the
order of 4 × 105 eV cm−1. Hence, the initial energy of 100 keV will be completely
lost as heat within the ice cube. Since no ion energy is left on the exit side, we would
have to replenish the ion energy at a rate of 100 kV×1 A = 100 kW, which is much
more than we would gain from fusion.

This is why nuclear fusion uses a different concept. The trick is that the heat
becomes not lost energy for the fusion processes. The magnetic confinement fusion
approach starts with a hot gaseous plasma containing deuterium and tritium ions.
Collisions between D+ and T+ ions, which do not lead to fusion, only scatter the
collision partners but do not alter the heat content of the hot plasma. Admittedly,
there is an energy leak by means of radiation losses (Bremsstrahlung), which are
generated during the scattering process. However, different from the accelerator
concept, where energy is dissipated in microseconds, the particle energy of the
fusion partners in the hot plasma can be contained for fractions of a second. This is
necessary to compensate for the lower density of the gaseous medium.

The other approach, inertial confinement fusion (ICF), which will be touched
in Sect. 1.5.6, achieves nuclear fusion in a highly compressed D–T target that has
a density of 300 g cm−3, about 1500 times the density of D–T ice. The plasma is
confined, for a short time of the order of a nanosecond, by its own inertia. This
concept was originally developed by John Nuckolls, in 1957, before the invention
of the laser. A full concept using lasers to compress the plasma was published in
1972 [40]. Alternatively, heavy-ion beams were suggested for ICF [41].

1.5.2 Magnetic Confinement in Tokamaks

The hot D–T plasma in a fusion device may be dilute but the energy yield from
fusion will be substantial when we can confine the particles and their kinetic energy
for a sufficiently long time. Such confinement can be achieved by means of strong
magnetic fields in a so-called tokamak device. Then, each projectile has many
repeated chances to collide with a fusion partner and the fusion yield is increased
accordingly. A cut-away view of a tokamak is shown in Fig. 1.17a. First of all, a
tokamak is a huge transformer, in which the plasma torus forms a single secondary
winding. Therefore, the first impression of a tokamak comes from the iron-yokes
of the transformer. The plasma itself is contained in a toroidal vacuum chamber,
which is surrounded by magnetic field coils for the confinement of the charged par-
ticles. The principles of particle confinement and the reason for choosing a tokamak
geometry will be outlined in Chap. 3.

1.5.3 Experiments with D–T Mixtures

While operating a tokamak as a power plant is still an ambitious goal for the near
future, some important milestones on this road can already be considered as history.
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Fig. 1.17 (a) The JET tokamak is 12 m high and has a D-shaped plasma cross-section and a total
plasma volume of 80–100 m3 (Image: EFDA-JET). (b) Fusion power development in the D-T
campaigns of JET and TFTR. (Graphic: EFDA/JET. Reprinted with permission from [42]. c© 2006,
American Nuclear Society)

In the 1990s, experiments with D–T mixtures were performed on the Tokamak
Fusion Test Reactor (TFTR) at Princeton Plasma Physics Lab, USA, and on the
Joint European Torus (JET) at Culham, UK, shown in Fig. 1.17a. These experiments
aimed at demonstrating a thermonuclear fusion plasma close to the break-even point
where the power production from nuclear fusion becomes comparable to the heating
power of the plasma. Such experiments became feasible after the high-confinement
regime (H-regime) of tokamak operation was discovered [43–45].

A preliminary fusion experiment with 10% tritium and 90% deuterium had been
performed on JET in 1991 resulting in a fusion power output of about 1.7 MW
[46]. Between the end of 1993 and the beginning of 1997, TFTR has been routinely
operated in high-confinement D–T discharges resulting in a maximum fusion power
output of 10.7 MW [47, 48]. A second D–T experimental campaign was performed
on JET, in 1997, which resulted in the demonstration of a near-breakdown operation
at Q = Pfusion/Pheating = 0.62 transiently and a maximum output power of 16 MW.
Figure 1.17b shows a comparison of the fusion power development in the JET and
TFTR D–T experiments [42].

1.5.4 The International Thermonuclear Experimental Reactor

The large-scale fusion experiments of the 1990s could only be performed on the
scale of a big economy, like the TFTR in the USA, JET in Europe, or JT-60 in
Japan. The next larger fusion reactor, however, requires joint efforts on a world
scale. Plans to establish such a device date back to 1985. Since 1988 a planning
group of 50 physicists and engineers from Europe, Japan, the former Soviet Union,
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and the United States worked on the design of a test reactor, which was presented in
December 1990. The detailed planning for an International Thermonuclear Exper-
imental Reactor (ITER) began in 1992 and the design report was presented to the
ITER council in 1998. Because of budget constraints in the member states, the ITER
design had to be cut back. In 2005 the ITER partners, which were joined by South
Korea and China in 2003, decided the location for ITER to be Cadarache, France.

ITER is designed to deliver a fusion power of 500 MW. An artistic cut-away
rendering of the device is shown in Fig. 1.18. Its magnet system comprises 18
superconducting toroidal and 6 poloidal field coils. The magnets are cooled with
liquid helium at 4 K. The toroidal magnetic field can reach a maximum of 11.8 T
and represents a total magnetic energy of 41 GJ. Besides the vacuum vessel, the
magnetic field coils will be the biggest components with a total weight of 6540
tons. The mechanical and operational parameters are compiled in Table 1.6 [49].

Fig. 1.18 Conceptual design
of the International
Thermonuclear Experimental
Reactor (ITER). At a total
height of 30 m, ITER is
nearly 3 times larger than
JET. The D-shaped vacuum
vessel is surrounded by
superconducting magnetic
field coils. (Reproduced with
permission. c© ITER
Organization)

Table 1.6 Design parameters
for ITER Total radius 10.7 m

Total height 30 m
Plasma radius 6.2 m
Plasma volume 840 m3

Plasma mass 0.5 g
Magnetic field 5.3 T
Maximum plasma current 15 MA
Heating power and current drive 73 MW
Fusion power 500 MW
Energy gain 10
Mean plasma temperature 2 × 108 K
Steady operation > 400 s
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1.5.5 Stellarators

There are two roads towards a fusion reactor with magnetic confinement, the toka-
mak and the stellarator. Most of the world’s devices today are tokamaks. While part
of the magnetic confinement in tokamaks is achieved by a strong electric current in
the plasma, stellarators form the magnetic cage only by means of external field coils.
Stellarators are therefore suitable for continuous operation. The plasma current in
a tokamak is produced by a transformer, which limits operation to a pulsed mode
unless other means of driving the plasma current are installed.

The Wendelstein 7-X stellarator, which is under construction in Greifswald, Ger-
many, has the objective to show that stellarators are fundamentally suitable for oper-
ation of a power plant. After completion, it will be the world’s largest stellarator-type
fusion experiment (see Fig. 1.19 and Table 1.7). With 30 m3 plasma volume it is still
a small experiment compared to ITER’s 840 m3. The main plasma heating methods
will be microwave, neutral particle and radio-frequency heating. For heating and for
diagnostic purposes, the Wendelstein 7-X stellarator is equipped with more than 250
ports.

With discharges lasting up to 30 minutes, Wendelstein 7-X is to demonstrate the
essential advantage of the stellarator: continuous operation with plasma conditions
similar to those in the ITER tokamak. But there is no intention of going for an

Fig. 1.19 Conceptual view of
Wendelstein 7-X, a stellarator
experiment with non-planar
superconducting field coils.
(Reproduced with kind
permission. c© IPP/MPG)

Table 1.7 Essential data
of the Wendelstein 7-X
stellarator

Major plasma radius 5.5 m
Minor plasma radius 0.53 m
Magnetic field 3 T
Discharge time 30 min
Plasma heating power 15 MW
Plasma composition H, D
Plasma volume 30 m3

Plasma temperature < 108 K
Plasma density < 3 × 1020 m−3

Energy confinement time 0.15 s
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energy-yielding plasma. This objective is reserved for ITER. If Wendelstein 7-X
can experimentally confirm the good properties predicted from model calculations,
a future demonstration power plant could also be based on the stellarator concept.

1.5.6 Inertial Confinement Fusion

Todays largest experiment for inertial confinement fusion is the National Ignition
Facility (NIF), located at Lawrence Livermore National Laboratory in California
[50]. While the primary goal of the NIF belongs to the National Security Program,
various basic science objectives have been defined: (a) to demonstrate fusion igni-
tion and energy gain for exploring laser fusion as a future energy source and (b) to
generate matter under extreme pressures and temperatures for studying astrophysi-
cal processes in the laboratory, which are occurring in stars and supernovae.

With its 192 laser beams (Table 1.8), a nearly spherically-symmetric illumina-
tion of the target can be achieved. The laser beam lines are housed in two separate
laser bay buildings, each 200 m long. The UV laser light is produced by frequency-
tripling of the infrared neodymium-glass laser wavelength of 1053 nm. The laser
beams end up in a 10 m-diameter target chamber and hit the inner wall of a small
gold cylinder of about 5 mm diameter and 10 mm length with the 2 mm diameter
D–T pellet at the center (Fig. 1.20). Construction of NIF began in 1997. Operation

Table 1.8 Design parameters
for the NIF Number of beam lines 192

Energy per beam line ≈ 10 kJ
Laser wavelength 351 nm
Pulse width 3.5 ns
Total energy per pulse (design) 1.8 MJ
Total power (design) 500 TW

Fig. 1.20 Gold cylinder
(hohlraum) for conversion of
the incoming laser energy to
X-rays. The hollow capsule
of D–T ice is suspended in
the center. The hohlraum is
cooled to 18 K temperature.
(Credit: Lawrence Livermore
National Laboratory and
Department of Energy)

laser beams

fuel layer
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(a) (b)

Fig. 1.21 (a) One of the present pellet designs for the NIF consists of a plastic hollow sphere with
D–T ice condensed to the wall and a D–T gas filling of 30 bar pressure. The arrows indicate the
X-rays heating up the ablator. (b) Development of a hot spot in the center of the compressed pellet

of a stack of four beam lines, between 2002 and 2004, demonstrated that the lasers
are able to deliver an energy of 10 kW each. Combined operation of all 192 lasers
began in February 2009, starting at a reduced test level of 80 kJ. Science experiments
are scheduled for 2010 at a tenfold higher pulse energy.

The principle of laser fusion is inertial confinement. The fusion reaction has
to burn a considerable part of the D–T fuel before the hot plasma has expanded.
The ignition condition for laser fusion requires that the D–T gas be compressed
to a density of about 1000–2000 times the density of D–T ice [51, 52]. Such a
compression is achieved by shining intense laser radiation (direct drive) or X-rays
(indirect drive) on a hollow sphere containing the D–T fuel. At typical intensities
of 1015 W cm−2, the outer ablation layer of the hollow sphere rapidly evaporates
and, by momentum conservation, the fuel is driven inward. The capsule behaves as a
spherical ablation-driven rocket. The pressure generated by the ablation is 100 Mbar
or greater. Presently, indirect drive is preferred because of the achieved high homo-
geneity of compression.

One of the presently discussed pellet designs for the NIF uses an ablator made of
hydrocarbons and a shell of D–T ice, see Fig. 1.21a. The volume is filled with D–T
gas at 30 bar pressure. The idea is to create a hot spot in the center of the compressed
pellet where the fuel ignites and a thermonuclear burn front propagates radially
outward into the main fuel, see Fig. 1.21b. The plasma in the hot spot reaches a
pressure of � 200 Gbar and is in pressure equilibrium with the surrounding colder
but denser main fuel. A more detailed discussion of the physics of laser fusion will
be given in Sect. 4.4.2.

1.6 Challenges of Plasma Physics

Plasma physics is a vivid field of basic and applied research in many subdisciplines.
While modern plasma physics can look back on 80 years of success in many fields,
there are still many big and far-reaching scientific problems that pose a challenge for
the next young generation of plasma scientists. Some of these big and fascinating
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questions have been compiled in a recent analysis of the status and perspectives of
plasma science [53].

• Space and astrophysical plasmas

– What are the origins and the evolution of plasma structures throughout the
magnetized universe?

– How are particles accelerated throughout the universe?
– How do plasmas interact with non-plasmas?

• Low temperature plasmas

– How can plasmas be used in the next generation of energy-efficient light
sources?

– How can plasma methods be optimized for purifying drinking water and for
other environmental problems?

– To which extent can new materials or advanced nanoparticles and nanowires
be tailored by plasma processes?

• Plasma physics at high energy densities

– Can we achieve fusion ignition and, eventually, useful fusion energy from
compressed and heated fusion plasma?

– Can we generate, using intense short-pulse lasers, electric fields in the multi-
GeV/cm range for accelerating charged particles to energies far beyond the
present limits of standard accelerators?

– Can we better understand some aspects of observed high-energy astrophysical
phenomena, such as supernova explosions or galactic jets, by carrying out
appropriately scaled experiments?

• Basic plasma science
The fields of basic research at the present forefront of plasma science are:

– Non-neutral plasmas and single-component plasmas
– Ultracold neutral plasmas
– Dusty plasmas
– Laser produced and high energy density plasmas
– Microplasmas at atmospheric pressure
– Plasma turbulence and turbulent transport
– Magnetic fields in plasmas
– Plasma waves, structures and flows

1.7 Outline of the Book

Before starting with the physics of plasmas, some words about using this book are
necessary.

Chapters 2–7 cover the typical subjects of introductory courses to plasma physics.
These chapters can be used in parallel with an introductory course. Chapters 8–11
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address more specialized topics covered in advanced courses. Each chapter con-
cludes with a brief summary of the basics, which may help the reader to recapitulate
the essentials of that chapter and may be helpful in preparing an exam. Problems
at the end of each chapter (with worked-out solutions in the appendix) help delving
deeper into the subject.

Starting from the definition of the plasma state (Chap. 2) in terms of quasi-
neutrality and shielding, single particle motion (Chap. 3) in different field geome-
tries or in time-varying fields is used as a first step into the realm of collisionless
plasmas. A bottom-up approach is chosen to make the reader familiar with the
sometimes strange behavior of plasmas without using too advanced mathematical
methods. The basics of magnetic confinement illustrate the single particle model.

Chapter 4 introduces the concepts for collisional plasmas. The intention is to
make the beginner familiar with the full span of plasma physics, which covers the
cold collisional plasmas of gas discharges or the ionosphere as well as the hot col-
lisionless plasmas in astrophysics or in fusion devices. Consequently, this chapter
illustrates electron heating and ambipolar diffusion in the positive column of a gas
discharge. At the same time, the heat balance of hot plasmas is used to introduce the
concepts of magnetic and inertial confinement fusion. The question of cross-field
currents is discussed in technical terms for an ion Hall thruster.

Fluid models and magnetohydrodynamics are introduced intuitively in Chap. 5.
The differences between single particle drifts and fluid models is exemplified by the
diamagnetic drift. The central concepts of isobaric surfaces, magnetic pressure and
field line tension are introduced. The consequences of frozen-in magnetic fields are
discussed for Alfvén waves and for the solar wind.

Plasma waves are discussed in Chap. 6 with a strong emphasis on a wide variety
of diagnostic applications in laboratory or natural plasmas. The concept of a plasma
as a dielectric medium is the guiding motive of this chapter.

Chapter 7 introduces the role of plasma boundaries and discusses space-charge
sheaths. These concepts find immediate application for diagnostics in terms of Lang-
muir probes. Space-charge limited flow is a central concept with applications to ion
extraction in thrusters.

The basic concepts of plasma instabilities are described in Chap. 8. The beam-
plasma instability is discussed at some length in terms of plasma normal mode anal-
ysis to prepare the later discussion of Landau damping in the subsequent Chapter.
The method of finding unstable modes is transferred to the Buneman instability.
Macroscopic instabilities in current carrying plasmas and Rayleigh-Taylor modes
are briefly discussed.

Chapter 9 uses a mathematically simplified introduction to the Vlasov model
and Landau damping. The relationship between kinetic theory and fluid models is
discussed. The physical processes behind Landau damping are presented in detail to
resolve the paradox of collisionless damping. A complementary kinetic description
by particle simulations is used to trace the instabilities into the non-linear regime
where trapping occurs. Virtual cathode oscillations are discussed as an example for
current interruption by space charge accumulation.
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The new field of complex (dusty) plasmas is surveyed in Chap. 10 with emphasis
on such phenomena that have no counterpart in classical plasmas, such as charge
variability, ion drag force or plasma crystallization.

The final Chap. 11 makes the reader familiar with plasma generation. For this
purpose a brief introduction is given to plasma discharge mechanisms in low-
pressure dc discharges, parallel-plate rf discharges and inductively coupled plasmas.



Chapter 2
Definition of the Plasma State

“I can’t tell you just now what the moral of that is, but I shall
remember it in a bit.”
“Perhaps it hasn’t one”, Alice ventured to remark.
“Tut, tut, child!” said the Duchess, “Everything ’s got a
moral, if only you can find it.”

Lewis Carroll, Alice in Wonderland

The plasma state is a gaseous mixture of positive ions and electrons. Plasmas can be
fully ionized, as the plasma in the Sun, or partially ionized, as in fluorescent lamps,
which contain a large number of neutral atoms. In this section we will discuss the
defining qualities of the plasma state, which result from the fact that we have a huge
number of charged particles that interact by electric forces. In particular we will see
that the plasma state is able to react in a collective manner. Therefore, the plasma
medium is more then the sum of its constituents.

2.1 States of Matter

Before going deeper into definitions of the plasma state, let us recall the characteris-
tic properties of a neutral gas. A gas is characterized by the number of particles per
unit volume, which we call the number density n. The unit of n is m−3. The motion
of the particles (in thermodynamic equilibrium) is determined by the temperature T
of the gas. In an ideal gas, the product of number density and temperature gives the
pressure, p = nkBT , in which kB is Boltzmann’s constant.

We will use the same terminology for plasmas, but in the plasma state we have
a mixture of two different gases, light electrons and heavy ions. Therefore, we have
to distinguish the electron and ion gas by individual densities, ne and ni. Moreover,
plasmas are often in a non-equilibrium state with different temperatures, Te and
Ti of electrons and ions. Such two-temperature plasmas are typically found in gas
discharges. The solar plasma (in the interior and photosphere), on the other hand, is
a good example for an isothermal plasma with Te = Ti.

Plasmas exist in an environment that provides for a large number of ionization
processes of atoms. These can be photoionization by an intense source of ultra-
violet radiation or collisional ionization by energetic electrons. Impact ionization is
the dominant process in gas discharges because of the ample supply of energetic

A. Piel, Plasma Physics, DOI 10.1007/978-3-642-10491-6_2,
C© Springer-Verlag Berlin Heidelberg 2010
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Table 2.1 Ionization and
recombination processes e + A → A+ + 2e Collisional ionization

hν + A → A+ + e Photoionization

A+ + 2e → A + e Three-body recombination
A+ + e → A Two-body recombination

electrons. Photoionization is found in space plasmas where the electron and atom
densities are low but a large number of ultraviolet (UV) photons may be present.
These processes and their reciprocal processes can be written in terms of simple
reaction equations, as summarized in Table 2.1.

Besides recombination by these volume processes, electrons and ions can effec-
tively recombine at surfaces, which may be the walls of discharges or embedded
microparticles. In thermodynamic equilibrium, each of these volume processes is
balanced by the corresponding reciprocal process (i.e., photoionization and two-
body recombination, or impact ionization and three-body recombination.) Because
the ionization energy of neutral atoms lies between 3 and 25 eV, plasmas produced
by impact ionization typically exist at high temperatures. Photoionized plasmas
require short wavelength radiation, typically in the UV region. There are also situa-
tions, in hot and dilute plasmas, where collisional ionization is efficient but electrons
are too few for three-body recombination. Then, a steady state can be reached, in
which two-body recombination balances the impact ionization. The solar corona is
an example for such a plasma that is in a non-thermodynamic equilibrium.

As a final remark, it is worth mentioning that some plasmas are not governed by
local equilibria but by non-local processes. The properties of the solar wind at the
Earth orbit, for example, are mostly determined by the emission process at the Sun’s
surface and by heating processes (e.g., shocks) during the propagation from Sun to
Earth. We will see in Chap. 11 that a negative glow is also produced by electrons
that have gained their energy at a different place.

2.1.1 The Boltzmann Distribution

Before we discuss the thermodynamic equilibrium of a plasma in more detail, it is
meaningful to recall some elementary concepts of classical statistical mechanics.
There, the relative population of different energy states is regulated by the Boltz-
mann factor. The relative population of the energy states Wi and Wk

1 is given by

ni

nk
= gi

gk
exp

(
−Wi − Wk

kBT

)
. (2.1)

gi and gk are the degeneracies of the states i and k, i.e., the number of substates
with the same energy. The exponential of the form exp(−W/kBT ) determines how

1 To avoid confusion with the electric field E we denote energies by the symbol W .
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many atoms have overcome the energy barrier Wi − Wk between the states i and k.
Another example for a Boltzmann distribution is the Maxwell-Boltzmann velocity
distribution of free particles

fM(vx , vy, vz) = 1

Z
exp

(
−m(v2

x + v2
y + v2

z )

2 kBT

)
. (2.2)

Z is a normalization factor. Here, the distribution of velocities is determined by the
kinetic energy W = m(v2

x +v2
y +v2

z )/2. The Maxwell distribution will be discussed
in more detail in Sect. 4.1.

2.1.1.1 Derivation of the Boltzmann Distribution

The derivation of the Boltzmann distribution from statistical mechanics is given here
for completeness. This paragraph may be skipped at first reading of this section.

We start with the concept of entropy, which attains a maximum value in a thermo-
dynamic equilibrium. Already in 1866, the Austrian physicist Ludwig Boltzmann
(1844–1906) introduced the logarithmic dependence of entropy on probability. The
entropy of a classical system of N particles, having a total energy U , which can
populate its different energy states Wi with Ni particles, is defined by

S = −kB

∑
i

ni ln ni . (2.3)

Here, ni = Ni/N is the relative population of the energy state Wi . Letting S take a
maximum value, we must take care of the constraining conditions

g(ni ) =
∑

i

ni Wi = U and h(ni ) =
∑

i

ni = 1 . (2.4)

A maximum with constraints is found by the method of Lagrange multipliers, which
requires

∂S

∂ni
= λ

∂g

∂ni
+ μ

∂h

∂ni
. (2.5)

Herefrom we immediately obtain

− ln ni − 1 = λWi + μ

ni = exp{−μ − 1 − λWi } . (2.6)

The two Lagrange-multipliers λ and μ are determined using the constraint h = 1

1 = e−μ−1
∑

k

e−λWk , (2.7)
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which gives

e−μ−1 =
(∑

k

e−λWk

)−1

(2.8)

and finally

ni = 1

Z
e−λWi and Z =

∑
k

e−λWk . (2.9)

The normalizing factor Z is called the partition function. The other Lagrange mul-
tiplier is found from the thermodynamic relationship 1/T = ∂S/∂U and yields
λ = (kBT )−1 (cf. Problem 2.6). Then the relative population of the energy states is
given by the Boltzmann distribution

ni = 1

Z
exp

(
− Wi

kBT

)
. (2.10)

The exponential exp(−Wi/kBT ) is the Boltzmann factor and the Boltzmann distri-
bution over energy states (2.1) follows immediately.

2.1.2 The Saha Equation

The Boltzmann factor Eq. (2.1) describes the distribution of the internal states of an
atom or the free states of the Maxwell-Boltzmann gas. Now we seek for a thermo-
dynamic description of the equilibrium between atoms and ions.

Thermal equilibrium conditions of a plasma are typically found in the interior of
stars or in the electric arc discharges used for street and stadium illumination. The
thermodynamic equilibrium state is characterized by the detailed balancing of each
process with its reciprocal process. Here we consider the balance of electron impact
ionization and three-body recombination

e + A � A+ + 2e , (2.11)

which can be quantified by the balance of the reaction rates

ne nA S(T ) = n2
e nA+ R(T ) . (2.12)

Here, ne is the electron density, nA the neutral atom density and nA+ the ion density.
The rate coefficients, S(T ) for ionization and R(T ) for three-body recombination
are only dependent on temperature. (Rate coefficients will be discussed in more
detail in Sect. 4.2.3.) Therefore, Eq. (2.12) can be rearranged into a mass action law
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ne nA+

nA
= S(T )

R(T )
=: fSaha(T )

fSaha(T ) = 2ZA+

ZA
exp

(
−Wion

kBT

)
. (2.13)

The function fSaha was derived in 1920 by the Indian astrophysicist Megh Nad Saha
(1893–1956) [54]. It contains the exponential exp(−Wion/kBT ) that determines the
probability to overcome the energy barrier Wion and the partition functions ZA =∑

k gk exp(−Wk/kBT ) of the atom [cf. Eq. (2.9)] and ZA+ of the ion. The factor 2
is the degeneracy of the free electrons, which have two distinguishable spin states.
The exponential in the Saha function has obvious similarities with the Boltzmann
factor.

The Saha-equilibria between different ionization stages of an atom can be
described in a similar manner. An example for the resulting ionization states of
a free-burning argon arc discharge is shown in Fig. 2.1. Because this electric arc is
operated in pressure equilibrium with the ambient air, the calculation was performed
at constant pressure rather than at constant atom number. Ionization reaches a few
percent at T > 10, 000 K and full single ionization is established at ≈ 20, 000 K,
where also the onset of double-ionization A++ is observed. Converting temperature
to energy units kBT , the onset of ionization in argon occurs at about 1 eV (corre-
sponding to 11,600 K, see Sect. 4.1.3).

The high operating temperature of an arc discharge lamp leads to a high energy
efficiency, because the maximum of the Planck curve for black-body radiation, as
given by Wien’s displacement law

Fig. 2.1 Ionization states of
an argon plasma in
thermodynamic equilibrium
at constant pressure
calculated from Saha’s
equation
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λmax(nm) = 2.898 × 106

T (K )
, (2.14)

shifts to the blue end of the visible spectrum (414 nm at T = 7000 K). Arc discharge
lamps used in data projectors have a sealed quartz discharge tube and develop oper-
ating pressures of (50–200) bar.

2.1.3 The Coupling Parameter

In the preceding paragraphs we have investigated how a rising temperature leads to
population of excited atomic states, to ionization of atoms, and to equilibria with
multiply ionized atoms. Now we focus our interest on the influence of particle den-
sity on the state of the plasma system. Then, the potential energy of the interacting
particles becomes important.

The states of neutral matter, solid–liquid–gaseous, are determined by the degree
of coupling between the atoms, which is described by the coupling parameter Γ =
Wpot/kBT , i.e., the ratio of the potential energy of nearest neighbors and the thermal
energy. For the Coulomb interaction of singly charged ions, the coupling parameter
becomes

Γi = e2

4πε0aWSkBTi
. (2.15)

Here, aWS is the Wigner-Seitz radius, a measure for the interparticle distance,
defined by

ni
4π

3
a3

WS = 1 . (2.16)

A similar coupling parameter can be defined for the interaction of the electrons or
the interaction between electrons and ions. To give typical orders of magnitude for
Γ , we can state that a gaseous state has Γ < 1 and is said to be weakly coupled.
The liquid state is found between 1 < Γ < 200. The solid phase exists at Γ > 200.
Liquid and solid phase are called strongly coupled. The exact numbers depend on
the system dimension and on the interaction with the electrons. Hence, a plasma is
not necessarily in a gaseous state. Strongly coupled plasmas can behave like liquids
or can even crystallize. Examples for the crystallization of a subsystem will be given
in Chap. 10 on dusty plasmas.

2.2 Collective Behavior of a Plasma

What is the difference between a neutral gas and a plasma? In a neutral gas, particles
interact only during a collision, i.e., when two gas atoms “feel” the short-range van
der Waals force, which decays with the interparticle distance as r−6. For most of
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the time, the gas atoms fly on a straight path independent of the other atoms. This is
quite different in a plasma. The Coulomb force that describes the electrostatic inter-
action decays only slowly as r−2, which makes it a long-range force. This means
that each plasma particle interacts with a large number of other particles. Therefore,
plasmas show a simultaneous response of many particles to an external stimulus.
In this sense, plasmas show collective behavior, which means that the macroscopic
result to an external stimulus is the cooperative response of many plasma particles.
Mutual shielding of plasma particles or wave processes are examples of collective
behavior.

2.2.1 Debye Shielding

The most important feature of a plasma is its ability to reduce electric fields very
effectively. We can discuss this effect of shielding by placing a point-like extra
charge +Q into an infinitely large homogeneous plasma, which originally has equal
densities of electrons and singly charged positive ions ne0 = ni0. Let us assume that
this extra charge +Q is located at the origin of the coordinate system. We expect
that electrons will be attracted and ions repelled by this extra charge as sketched in
Fig. 2.2a. This gives rise to a net space charge in the vicinity of +Q, which tends to
weaken the electric field generated by +Q.

The bending of the trajectory depends on the particle energy. The higher the
energy of the electrons (ions) is, i.e., the higher the temperature of the electron (ion)
gas is, the stiffer the trajectory becomes, as indicated in Fig. 2.2b. Therefore, a cold
species of particles will be very effective in shielding the extra charge and we can
conjecture that the size of the perturbed region is small, whereas the pertubation has
a greater range for hotter electrons (ions).

Obviously, this shielding process is not static, but is governed by the thermal
motion of the plasma electrons and ions. Therefore, we need a simple statistical
description, for which we use the Boltzmann factor. For a quantitative description,
we calculate the number of electrons and ions that are found at an enhanced elec-
tric potential in the vicinity of +Q. For a repulsive potential, the Boltzmann factor
Eq. (2.1) gives the number of particles in a thermal distribution that have overcome

Fig. 2.2 (a) Shielding arises
from a net attraction of
electrons and repulsion of
positive ions, leading to
trajectory bending. (b) For
higher energy the trajectories
become stiffer and the
shielding less efficient
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a potential barrier Φ. For an attractive potential, the density can even become higher
than the equilibrium value:

ne(r) = ne0 exp

(
+eΦ(r)

kBTe

)
,

ni(r) = ni0 exp

(
−eΦ(r)

kBTi

)
. (2.17)

For simplicity, we assume that the perturbed potential Φ is small compared to the
thermal energy, which allows us to expand the exponential and use only the first
term in the Taylor-expansion

ne(r) ≈ ne0

(
1 + eΦ(r)

kBTe

)

ni(r) ≈ ni0

(
1 − eΦ(r)

kBTi

)
. (2.18)

A self-consistent solution for the electric potential can then be obtained by using
Poisson’s equation

�Φ = − 1

ε0
[Qδ(r) − ene(r) + eni(r)] (2.19)

and inserting the linearized densities from Eq. (2.18)

∂2Φ

∂r2
+ 2

r

∂Φ

∂r
= − 1

ε0

[
Qδ(r) − ene0

eΦ

kBTe
− eni0

eΦ

kBTi

]
. (2.20)

On the l.h.s. of this equation we have used the spherical symmetry of the problem,
which makes Φ independent of angular variables. On the r.h.s. we have used the
assumed neutrality of the unperturbed system, ne0 = ni0. Rearranging all con-
tributions that contain Φ to the left side, we obtain a differential equation of the
Helmholtz type

∂2Φ

∂r2 + 2

r

∂Φ

∂r
− 1

λ2
D

Φ = − Q

ε0
δ(r) . (2.21)

The parameter λD has the dimension of a length and is defined by

1

λ2
D

= e2ne0

ε0kBTe
+ e2ni0

ε0kBTi
. (2.22)

The differential equation Eq. (2.21) can be solved by assuming that the potential
distribution is given by a modified Coulomb potential

Φ(r) = a

r
f (r) . (2.23)
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Then, for all r > 0, the function f (r) is a solution of the differential equation

f ′′ − λ−2
D f = 0 , (2.24)

which gives f1(r) = exp(−r/λD). A second solution, f2(r) = exp(+r/λD), is
unphysical because the perturbed field would increase indefinitely with distance r .
The normalization constant a is obtained by applying Gauss’ theorem to a small
sphere around the origin

∮
D · dA = 4πr2ε0 Er = Q . (2.25)

Here we have assumed that for r/λD → 0 the sphere only contains the extra charge
Q but no space charge from the perturbed distributions of electrons and ions. From
Eq. (2.23) we obtain

Er = a

r2

(
1 + r

λD

)
e−r/λD → a

r2
. (2.26)

Hence, the normalization a is the same as for the Coulomb potential a = Q (4πε0)
−1.

The complete solution

Φ(r) = Q

4πε0 r2 e−r/λD (2.27)

is called the Debye-Hückel potential after pioneering work of Pieter Debye (1884–
1966) and Erich Hückel (1896–1980) on polarization effects in electrolytes [55].
A similar shielded Coulomb potential was later found in nuclear physics for inter-
actions mediated by the exchange of a finite-mass particle like the pion by Nobel
prize winner Hideki Yukawa (1907–1981). In classical weakly-coupled plasmas, the
standard terminology is Debye shielding whereas the younger literature on strongly-
coupled systems has a preference for Yukawa-interaction, a terminology also used
in colloid science.

The parameter λD is the Debye shielding length, which describes the combined
shielding action of electrons and ions. When we are interested in the individual
contributions of electrons and ions we can define the electron Debye length λDe and
the ion Debye length λDi separately,

λDe =
(
ε0kBTe

ne0e2

)1/2

λDi =
(
ε0kBTi

ni0e2

)1/2

. (2.28)

Inspecting the dependence of the electron (ion) Debye length on temperature, we see
that our initial conjecture is confirmed. The shielding length increases when the tem-
perature rises, i.e., the size of the perturbed region becomes larger. The dependence
on density ∝ n−1/2

e0 (n−1/2
i0 ) means that an increasing number of shielding particles

makes the shielding more efficient and diminishes the size of the perturbed volume.
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Fig. 2.3 Deflection of an
electron beam by a transverse
electric field E in a traditional
cathode ray oscilloscope tube

–

Yet, why is the Debye length independent of the particle mass? We can gain
insight into this property from a mathematically simpler situation, in which the
electric field is homogeneous. Consider the cathode ray tube of a traditional oscil-
loscope. There, an electron of mass m, charge q and energy W enters the space
between two deflection plates of length L (Fig. 2.3) and performs a free-fall motion
in the electric field. Hence, the trajectory in the space between the deflection plates
is a parabola.

The initial velocity is v = (2W/m)1/2 and the electron needs a transit time
τ = L/v to traverse the deflection plates. In this time, it has fallen a distance

s = q E

2m
τ 2 = q E L2

4W
, (2.29)

which is independent of the mass m but depends on the energy W . Noting that the
tangent to the parabola at the exit point intersects the undeflected orbit at x = L/2,
the deflection angle becomes α = arctan(2s/L). This independence of mass is the
reason, why a transverse electric field can be used as an energy filter to sort out
particles of same energy independent of their mass.

λD is often called the linearized Debye length. The reader may also recognize an
analogy between the structure of Eq. (2.22) and the parallel circuit of two resistors
in electricity:

1

λ2
D

= 1

λ2
De

+ 1

λ2
Di

↔ 1

Rtotal
= 1

R1
+ 1

R2
. (2.30)

In the shielding process, electrons and ions work in parallel. Attracting electrons
and repelling ions both results in a net negative charge in the vicinity of the extra
charge. Similar to the total resistance Rtotal of the parallel circuit, which is smaller
than any of the two resistors R1 and R2, the linearized Debye length is smaller than
λDe and λDi. A comparison between a Coulomb potential and a shielded potential
is shown in Fig. 2.4. For r > λD, the potential decays much faster than a Coulomb
potential.

Summarizing, the perturbed electric potential around an extra charge Q decays
exponentially for r > λD. This observation has two consequences. When we require
that a cloud of electrons and ions behaves as a plasma, the cloud must have a size
of several Debye lengths. Moreover, any deviation from equal densities of electrons
and ions tends to be smoothed by Debye shielding. Therefore, a plasma has the
natural tendency to become quasineutral.
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Fig. 2.4 Comparison of a
Coulomb and shielded
(Debye - Hückel or Yukawa)
potential. Note the stronger
decay for r/λD > 1

–

–
–

2.2.2 Quasineutrality

As we have learned in the preceding paragraph, a plasma is not a strictly neutral
mixture of electrons and positive ions but deviations from neutrality can develop on
short scales, the Debye length. Therefore, we define that on length scales larger than
the Debye length the plasma must be quasineutral

∣∣∣∣∣∣
∑

j

Z j e ni0, j − ne0 e

∣∣∣∣∣∣ � ne0 e . (2.31)

Here, the sum is extended over all (positive) ion species j of charge number Z j . The
charge number is a positive quantity, hence negative ions will have a minus-sign
before the charge number. For a single ion species of charge q = +e we often
use the short-hand notation of the quasineutrality condition ni0 = ne0. In this way,
quasineutrality can be used as a defining quality of a classical plasma, in Langmuir’s
parlance, to distinguish the plasma region from space-charge regions.

There are, however, systems consisting of one polarity of charges only, like elec-
trons or ions in potential traps, which show similar collective behavior as plasmas.
In these nonneutral plasmas (cf. Sect. 3.1.6), as they are called, the potential trap
takes the role of the neutralizing species of the other polarity.

2.2.3 Response Time and Plasma Frequency

The response to an external electric perturbation was established by the combined
action of many particles. Therefore, Debye shielding is one example for collective
behavior of a plasma. The second aspect of collective behavior is the time scale,
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after which the electrons establish a shielded equilibrium. The heavier ions will
take a much longer time to reach their equilibrium positions.

When the potential pertubation is small, |eΦ| � kBT , the electron energy is not
much changed from its thermal value. Hence, the typical electron velocity remains
close to a thermal velocity ve ≈ (kBTe/me)

1/2 (see Sect. 4.1 for a more thorough
definition). For the establishment of the new equilibrium, the electron must be able
to reach its new position at a typical distance λDe. This time can be estimated as
τ ≈ λDe/ve. The reciprocal of this response time is called the electron plasma
frequency

ωpe = ve

λDe
=

(
ne0e2

ε0me

)1/2

. (2.32)

We will see in Sect. 8.1 that a deviation from thermodynamic equilibrium may excite
oscillations of the plasma close to the electron plasma frequency. Such oscillations
or waves are the natural collective modes of the electron gas.

In summary, we can state that a plasma of size L must be sufficiently large,
i.e., L 
 λD, to behave in a collective manner. This would disqualify a typical
candle flame as a plasma because it is too small though it may have some ionization.
Although not so obvious, a plasma must also exist for a period of time larger then
the response time, T 
 ω−1

pe , to behave in a collective manner.

2.3 Existence Regimes

Plasmas are found in a huge parameter space, which covers seven orders of mag-
nitude in temperature and twenty-five orders of magnitude in electron density (see
Fig. 2.5). The temperature scale refers to the electron temperature. Typical examples
are marked for astrophysical situations, some technical plasmas and the regime of
controlled nuclear fusion.

2.3.1 Strong-Coupling Limit

The usual definition of a weakly coupled or ideal plasma is the requirement that
there are many electrons inside the electron Debye sphere. This ensures that Debye
shielding is a collective process and that the statistical derivation of a Debye length
was correct. For this purpose we define the number of electrons inside the electron
Debye sphere as the plasma parameter NDe

NDe = 4π

3
λ3

Dene . (2.33)

Because of the different temperatures, we can have different coupling states of elec-
trons and ions NDe �= NDi. We will see in Chap. 10 that the dust system can be
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Fig. 2.5 Existence diagram of various plasmas. The dotted line marks the border for strong cou-
pling, the dashed line the onset of quantum effects. Relativistic effects play a role for T > 109 K

strongly coupled because of the high charge number on a dust grain whereas the
electron and ion gas remain weakly coupled.

The border line between weakly and strongly coupled plasmas is defined by
NDe = 1 (see dotted line in Fig. 2.5), which gives the equation of the border line

ne =
(

4πε0

3e2

)2

T 3
e . (2.34)

This line has the slope 3 in the log n–log T representation. From Eqs. (2.15) and
(2.16) we obtain a relation between the plasma parameter NDi and the coupling
parameter Γi (see Problem 2.5)

Γi = 1

3
N−2/3

Di . (2.35)
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Hence, a larger number of particles in the Debye sphere ensures that the coupling
strength is small. In other words, the electric field is the average field of many
particles, whereas in a strongly coupled system the field of the nearest neighbor
dominates. Weakly coupled plasmas are found at high temperature and low electron
density. On the border line, NDi = 1, we have Γ = 1/3.

2.3.2 Quantum Effects

Quantum effects come into play when the interparticle distance of the electrons
becomes comparable with their thermal de Broglie wavelength

λB = h

mevTe
. (2.36)

Here, vTe = (2kBTe/me)
1/2 is the most probable speed of a Maxwell distribution

(see Sect. 4.1). In this limiting case, the Pauli exclusion principle becomes impor-
tant and we must use Fermi-Dirac statistics. Such a plasma is called degenerate
and the conditions of a cold dense plasma are typically found in dead stars, like
White Dwarfs. It is worth mentioning that the exclusion principle prevents the final
collapse of such a burnt-out star.

The second border line for degeneracy of the electron gas, λB = n−1/3
e is also

shown as dashed line in Fig. 2.5. Here, the slope is 3/2 in the log n–log T diagram.
Note that the electrons in a metal form a strongly coupled degenerate system. Rel-
ativistic effects for the electrons become important for T > 109 K as marked by
the dot-dashed line in Fig. 2.5. The marked regions of typical plasmas can all be
treated by non-relativistic models. This simplifies the plasma models in the subse-
quent chapters.

The Basics in a Nutshell

• Plasmas are quasineutral: ne = ∑
k Zknk .

• Quasineutrality can be violated within a Debye length λD

λD = λDeλDi

(λ2
De + λ2

Di)
1/2

, λDe,Di =
(
ε0kBTe,i

n2
e,i

)1/2

.

• Quasineutrality can be established by the electrons within τ = ω−1
pe , with

the plasma frequency

ωpe =
(

nee2

ε0me

)1/2

.
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• The coupling parameter Γ determines the state of each plasma component
(electrons, ions, dust)

Γ = q2

4πε0a2
W S kBT

.

Γ may be different for the components, depending on the individual tem-
peratures and densities. A gaseous phase is found for Γ � 1, the liquid
state for 1 < Γ < 180 and the solid phase for Γ > 180.

Problems

2.1 Prove that the electron Debye length can be written as

λDe = 69 m

[
T (K)

ne(m−3)

]1/2

2.2 Calculate the electron and ion Debye length
(a) for the ionospheric plasma (Te = Ti = 3000 K, n = 1012 m−3).
(b) for a neon gas discharge (Te = 3 eV, Ti = 300 K, n = 1016 m−3).

2.3 Consider an infinitely large homogeneous plasma with ne = ni = 1016 m−3.
From this plasma, all electrons are removed from a slab of thickness d = 0.01 m
extending from x = −d to x = 0 and redeposited in the neighboring slab from x =
0 to x = d. (a) Calculate the electric potential in this double slab using Poisson’s
equation. What are the boundary conditions at x = ±d? (b) Draw a sketch of space
charge, electric field and potential for this situation. What is the potential difference
between x = −d and x = d?

2.4 Show that the equation for the shielding contribution (2.24) results from (2.21)
and (2.23).

2.5 Derive the relationship between the coupling parameter for ion-ion interaction
Γ Eqs. (2.15) and ND (2.33) under the assumption that Te = Ti.

2.6 Show that the second Lagrange multiplier in Eq. (2.6) is λ = (kBT )−1.
Hint: Start from

1

T
= ∂S

∂λ

∂λ

∂U

and use
∑

ni = 1.



Chapter 3
Single Particle Motion in Electric
and Magnetic Fields

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe.

Lewis Carroll, Jabberwocky

Plasmas belong to two different categories, unmagnetized and magnetized. The
plasma in a fluorescent tube is unmagnetized, because the motion of electrons and
ions is determined by electric fields and collisions, and the Earth magnetic field
is too weak to bend the trajectories. The ionosphere, the magnetosphere, the solar
wind, the interstellar medium and the solar surface are examples for natural magne-
tized plasmas. There, the motion of the particles is strongly affected by the magnetic
field.

This chapter is focused on the motion of individual charged particles in given
electric and magnetic fields. Of particular importance is the quest for magnetic con-
finement of plasmas. The inhomogeneity and curvature of magnetic field lines, or
the variation of the fields in time cause complex particle motion. The model of
single particle motion neglects the influence of particle currents on the electric and
magnetic fields. In this respect, the model is still incomplete. Nevertheless, from an
understanding of particle motion the reader will gain insight into the basic properties
of a plasma that is subjected to electromagnetic fields.

3.1 Motion in Static Electric and Magnetic Fields

3.1.1 Basic Equations

The starting point for establishing the single-particle model is Newton’s equation1

for the motion of a particle of mass m and charge q in a given electric field E and
magnetic field B

mv̇ = q(E + v × B) , (3.1)

1 Sometimes called Newton-Lorentz equation

A. Piel, Plasma Physics, DOI 10.1007/978-3-642-10491-6_3,
C© Springer-Verlag Berlin Heidelberg 2010

45
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in which the dot represents the time derivative at the position of the particle. This
equation can be solved in rigid mathematical terms only for simple cases, e.g.,
homogeneous and stationary fields.

3.1.2 Cyclotron Frequencies

Let us first consider the case of a homogeneous and stationary magnetic field B =
(0, 0, Bz) and a vanishing electric field E = 0. The magnetic field is chosen as
z-axis because of the cylindrical symmetry about the B-field direction. Then, we
obtain Newton’s equation of motion in cartesian coordinates as

v̇x = +vy
q

m
Bz

v̇y = −vx
q

m
Bz

v̇z = 0 . (3.2)

By combining the equations for the x and y-motion we obtain the differential equa-
tion for a harmonic oscillator

v̈x,y = −
(

q Bz

m

)2

vx,y . (3.3)

This harmonic oscillator describes a periodic motion at a frequency

ωc = |q|
m

Bz , (3.4)

which we call the cyclotron frequency. Inserting numbers for q, B, and m we find
the cyclotron frequency of an electron in a magnetic field of 1 T at ωce = 1.759 ×
1011 s−1 = 2π × 27.99 GHz. At the same magnetic field, the proton cyclotron
frequency is ωcp = 9.579 × 107 s−1 = 2π × 15.25 MHz.

In the x-y plane, a particle with perpendicular velocity v⊥ performs a circular
orbit with the gyroradius or Larmor radius, named after the Irish physicist Joseph
Larmor (1857–1942),

rL = v⊥
ωc

. (3.5)

When the initial velocity vz along the magnetic field is nonzero, the orbit
becomes a helix of constant pitch about the magnetic field direction (z). The motion
about a magnetic field line is referred to as gyromotion or gyroorbit.

The sense of rotation about the magnetic field depends on the sign of the parti-
cle’s charge. Electrons move in a right-handed, positive ions in a left-handed orbit
(see Fig. 3.1).
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Fig. 3.1 (a) Gyro motion of
electrons and ions. Note that
electrons perform a
right-handed motion about
the magnetic field (Consider
the thumb of your right hand
representing the magnetic
field direction, then the
fingers give the sense of
electron motion). (b) Helix
orbit of an ion

electron positive ion

helical
ion orbit

a)

b)

When the ions (electrons) can perform complete gyroorbits, the ions (electrons)
are called magnetized. This is the case, when the gyroorbits are not interrupted
by collisions. A condition for this to happen is that the ion (electron) collision
frequency (cf. Sect. 4.2.2) is smaller than the ion (electron) cyclotron frequency.
Usually, this condition can be better fulfilled by electrons than by ions. A more
detailed discussion of the interplay of gyromotion and collisions can be found in
Sect. 4.3.4.

The ions in a gas discharge plasma in the presence of the Earth’s magnetic field
can be considered as unmagnetized. This may be unrelated to the frequency of col-
lisions but is rather a consequence of the size of the gyroradius, which is larger than
the diameter of the discharge tube.

3.1.3 The Earth Magnetic Field

In the immediate neighborhood of the Earth, the magnetic field has the shape of a
dipole field (Fig. 3.2). The source of this field can be represented by a magnetic
dipole at the Earth’s center with a magnetic moment of |M| = 7.3 × 1022A m2.
This dipole is tilted from the axis of rotation leading to a deviation of the magnetic
poles from the geographic poles. The Earth magnetic field is generated by electric
currents in the Earth’s core. The general shape of the distorted Earth magnetic field
under the influence of the solar wind was shown in Fig. 1.6.

Fig. 3.2 The unperturbed
dipole field near the Earth.
The horizontal line marks the
equatorial plane
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The magnetic induction B(r) of a dipole field is given by the expression

B(r) = μ0

4π

3r(r · M) − r2M
r5

. (3.6)

Here r is a vector pointing from the magnetic dipole to the field point. At the author’s
location (54.3◦ N.; 10.1◦ E), the Earth magnetic field has a horizontal component
Bh = 17, 700 nT and a vertical component Bv = −46, 150 nT.

3.1.4 E×B Drift

When we now allow for a stationary and homogeneous electric field, we can choose
the orientation of our coordinate system, without loss of generality, to have electric
and magnetic field in the x-y plane, E = (Ex , 0, Ez) and B = (0, 0, Bz). In this
case, Newton’s equation of motion reads

v̇x = q

m

(
Ex + vy Bz

)

v̇y = q

m
(−vx Bz)

v̇z = q

m
Ez . (3.7)

The motion along the magnetic field is now accelerated but independent of the
motion in the x-y plane. According to the principle of superposition of motions,
we can consider both effects separately. For the x-y plane, the motion can again be
decomposed

v̈x = −ω2
cvx

v̈y = −ω2
c (vy + Ex/Bz) . (3.8)

Again, we find a harmonic oscillation in x-direction, but the motion in y-direction
is more complex. In a moving frame of reference, ṽy = vy + Ex/Bz , which moves
at a constant velocity −Ex/Bz in negative y-direction, we obtain a simple harmonic
motion

¨̃vy = −ω2
c ṽy . (3.9)

Thus the solution for the velocities is the superposition of a circular orbit and a
constant motion in the same plane. This constant motion is called the E×B-drift.
For a particle that is initially at rest, the solution reads

vx = Ex

Bz
sinωct

vy = Ex

Bz
[cosωct − 1] . (3.10)
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Fig. 3.3 Cycloidal trajectory
resulting from the
superposition of gyro-motion
and E×B-drift. The electric
field is oriented along the
x-axis, the magnetic field is
perpendicular to the x–y
plane. Note that ions (full
line) and electrons (dashed
line) have the same drift
direction. An artificial
electron mass was assumed
here for clarity,
me = 0.3 mion

A typical trajectory is shown in Fig. 3.3. Mathematically, the trajectory is a cycloid.
For a positive particle starting at t = 0 in the origin, the trajectory is described by

x = Ex

Bzωc
[1 − cos(ωct)] , y = Ex

Bzωc
[sin(ωct) − ωct] (3.11)

The E×B-drift can also be understood from energy considerations. On the high-
potential side, the kinetic energy is small, which makes the instantaneous gyroradius
small. On the low-potential side, the ion has gained kinetic energy from the electric
field, which makes the gyro-radius larger. The combination of these two effects
results in a cycloidal motion.

It is a peculiarity of the E×B-drift that negative electrons and positive ions expe-
rience the same sign of the drift velocity. This is a consequence of the fact that the
applied electric field force qE and the resulting Lorentz force qv × B both depend
on the sign of q, which cancels in the result. This effect can also be seen in Fig. 3.3.
In vector notation, the E×B drift velocity is given by

vE = E × B
B2 . (3.12)

3.1.5 Gravitational Drift

When we consider the ionospheric plasma at the magnetic equator, we find a similar
situation to crossed electric and magnetic fields. Here, the force of gravity, mg, is
perpendicular to the (horizontal) magnetic field lines. Neglecting collisions, which
indeed are important in the lower ionosphere, Newton’s equation of motion

mv̇ = mg + qv × B (3.13)
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can be translated into the case of E×B motion by introducing an equivalent electric
field E = (m/q)g. Without solving Eq. (3.13) we can immediately give the result
for the velocity of the gravitational drift

vg = m

q

g × B
B2

. (3.14)

Note that now the drift velocity depends on mass and charge. In particular, electrons
and positive ions will drift in opposite directions. The gravitational drift is respon-
sible for an equatorial net electric current that is driven by the weight force on the
plasma. However, the collisionless approximation is too crude to give its correct
magnitude.

3.1.6 Application: Confinement of Nonneutral Plasmas

A nonneutral plasma consists of only one sort of charged particles, often positive
ions. Fig. 3.4 shows a typical magnetic trap of the Penning-Malmberg type, which
is suitable for trapping electrons or ions. These traps use strong magnetic fields of
|B | > 1 T. A review of experiments with this device can be found in [56].

The axial magnetic field B provides magnetic confinement by having the ions
gyrate about the magnetic field line. The axial confinement is achieved by electric
fields from the positively-biased outer cylinders that repels the ions towards the
center. The ion cloud represents a region of positive space charge. From Poisson’s
equation in cylindrical geometry

1

r

∂

∂r
(r Er ) = nie

ε0
(3.15)

we obtain Er = 1
2 nierε−1

0 , i.e., the electric field increases linearly from the center
to the edge of the ion cloud. Hence, the E×B velocity increases in the same man-
ner, which means that the cloud rotates as a rigid body with an angular frequency
ω = E(r B)−1 = 1

2 nie(ε0 B)−1. Ions can be cooled to milli-Kelvin temperatures
by a technique called laser-doppler cooling [57]. Such devices can be used to trap
antiprotons for a sufficiently long time to recombine with positrons from a radioac-
tive source to form antihydrogen [58–60].

Fig. 3.4 The Penning–Malmberg trap for confining a nonneutral plasma of positive ions (hatched
area) uses three cylindrical tube electrodes aligned with a strong magnetic field B
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3.2 The Drift Approximation

In this Section, approximate solutions are sought for the case of inhomogeneous
and curved magnetic fields. We will discuss the influence of inhomogeneity and
curvature in separate steps although these two aspects are intertwined by Maxwell’s
equations.

3.2.1 The Concept of a Guiding Center

We have seen that the effect of an external force on a gyrating particle can be
described as a net drift motion that is superimposed on the gyromotion. We will
apply this idea to the motion in inhomogeneous magnetic fields. For this purpose,
we assume that the true particle orbit can be decomposed into a circular orbit about
a local guiding center and a drift motion of the guiding center (see Fig. 3.5). For
the drift motion we calculate a net force, which is the average over one gyro-period.
This net force is then converted into an equivalent electric field—as in the case of
the gravitational drift—and the drift velocity is obtained from Eq. (3.12).

Such an approximation requires that the gradient of the magnetic field is small.
This can be expressed by the requirement that the change of the magnetic field
across one gyroradius is small compared to the magnitude of the magnetic field at
the guiding center

rL
∂Bz

∂r
� Bz . (3.16)

The guiding center approximation is in fact more than a simple Taylor expansion
of the fields. The resulting expressions have a wider range of applicability than
expected from the requirement of Eq. (3.16).

Fig. 3.5 The concept of a guiding center decomposes the actual cycloidal orbit into a circular
motion about the guiding center and a drift motion of the guiding center

3.2.2 Gradient Drift

In a first step, we assume that the magnetic field is inhomogeneous, but that the field
lines are straight and parallel. The influence of field line curvature will be discussed
separately below. The particle experiences a Lorentz force F = qv × B. In the
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Fig. 3.6 Gradient drift of
electrons and ions. This drift
is charge sensitive. Note that
the instantaneous curvature of
the trajectory is smaller in
regions of stronger magnetic
field

geometry shown in Fig. 3.6, the y-component of this force is given by

Fy = −qvx Bz(y) , (3.17)

where Bz(y) is the true magnetic field at the position of the particle. This can be
estimated from the field at the guiding center by Taylor expansion, Bz(y) = B0 +
y(t)(∂Bz/∂y), yielding

Fy = −qv⊥ sin(ωct)

[
B0 ± rL sin(ωct)

∂Bz

∂y

]
. (3.18)

v⊥ is the orbit velocity of the gyrating particle in a plane perpendicular to the mag-
netic field. The upper sign in this expression corresponds to positive, the lower sign
to negative particles. When we put B0 outside the brackets, the small expansion
parameter becomes visible

Fy = −qv⊥ sin(ωct)B0

[
1 ± rL(∂Bz/∂y)

B0
sin(ωct)

]
. (3.19)

According to the recipe given above, we now need to average the force over one
gyroperiod and make use of the fact that the average of a sine function over one
period is zero whereas the average of the sine-square is 1/2

〈Fy〉 = ∓qv⊥rL
∂Bz

∂y
〈sin2(ωct)〉 = ev⊥rL

∂Bz

∂y

1

2
. (3.20)

The resulting average force is independent of the sign of the charge. However, the
corresponding equivalent electric field E = (1/q)〈Fy〉 is charge sensitive. Hence,
we obtain a drift velocity

v∇ B = 1

q

〈F〉 × B
B2

= ±1

2
v⊥rL

B × ∇|B|
B2

. (3.21)

This is the velocity of the gradient drift. The charge dependence leads to charge
separation and to the formation of a net current across the magnetic field.
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3.2.3 Curvature Drift

In the second step, we now consider curved field lines with a constant radius of
curvature Rc. At the same time, we neglect the gradient of the magnetic field, which
we have already discussed in the preceding paragraph. The curvature drift is an
effect of motion along the field line, where the particle experiences a centrifugal
force Fc from the curvature

〈Fc〉 = mv2
z

Rc
eR . (3.22)

Here, vz is the parallel velocity and eR the unit vector in radial direction. We have
retained the average over a gyroperiod for compatibility with calculations above.
This reflects the idea that the particle experiences a constant net curvature during
one gyroorbit. This force leads to a drift velocity

vR = 1

q

Fc × B
B2

= mv2
z

q B2

Rc × B
R2

c
. (3.23)

3.2.4 The Toroidal Drift

The expression for the curvature drift Eq. (3.23) looks quite different from the gra-
dient drift as long as we do not know how to relate the radius of curvature of a field
line to the gradient of the magnitude of B. We assume that the field lines of interest
are generated by currents that flow outside the considered volume. These may be
the currents in magnetic field coils that confine a plasma, or the dynamo currents in
the Earth’s core that generate Earth’s magnetic field.

Because of the separation of the current region from the field region, we can
assume the magnetic field being irrotational

(∇ × B)z = ∂Br

∂s
− ∂Bθ

∂r
= 0 . (3.24)

From Fig. 3.7 we obtain the relation

ds

Rc
= −dBr

Bθ

order : 1

Rc
= − 1

Bθ

∂Br

∂s
. (3.25)

Using Eq. (3.24) we find

1

Rc
= − 1

Bθ

∂Bθ

∂r
, (3.26)

which means that the radius of curvature is the inverse of the logarithmic deriva-
tive of the magnetic field strength. Introducing the vector Rc, we can rewrite the
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Fig. 3.7 The relationship
between magnetic field
gradient and radius of field
line curvature

magnetic field gradient as

∇|B|
|B| = − Rc

R2
c
. (3.27)

This expression allows us to calculate the additional contribution of the curvature
drift

v∇ B = 1

2

m

q

v2⊥
R2

c B2
Rc × B . (3.28)

The total drift in inhomogeneous curved magnetic field finally becomes the sum of
Eqs. (3.23) and (3.28),

vR + v∇ B = m

q

(
v2

z + 1

2
v2⊥

)
Rc × B
R2

c B2 . (3.29)

This sum is often called the toroidal drift because of its role in magnetic confinement
in torus-like configurations. Since both contributions depend on the square of the
particle velocities the two effects lead always to an increased total drift.

3.3 The Magnetic Mirror

In this Section we consider a situation where the gradient of the magnetic field is
parallel to the field direction (see Fig. 3.8). For mathematical simplicity we assume
a bundle of straight field lines with rotational symmetry about a central field line.
The guiding center is assumed to move along this central field line. We are allowed
to neglect the curvature of the field lines, which would lead to a curvature drift as
discussed above.
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Fig. 3.8 The magnetic field
lines with a longitudinal
gradient form a magnetic
mirror

B
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3.3.1 Longitudinal Gradient

In such a type of inhomogeneous magnetic field, a charged particle experiences a
constant net Lorentz force q(v⊥ × Br ) that has its origin in the radial component of
the magnetic field. The force vector is oriented along the central field line and points
in the direction of a weaker field. Note that the sign of the charge cancels because
of the reversed sense of gyration for negative particles. This force acts to decelerate
and eventually reflect a particle that has originally moved into the region of stronger
field. Therefore, this field geometry is called a magnetic mirror.

We obtain the radial part of the magnetic field from the vanishing of the diver-
gence of the magnetic induction

0 = ∇ · B = 1

r

∂

∂r
(r Br ) + ∂

∂z
Bz . (3.30)

When we prescribe the longitudinal gradient ∂Bz/∂z at r = 0, and assume this as
approximately constant, we can integrate Eq. (3.30)

r Br = −
r∫

0

r
∂Bz

∂z
dr ≈ −1

2
r2

[
∂Bz

∂z

]
r=0

(3.31)

and obtain the radial magnetic field as

Br ≈ −1

2
r

[
∂Bz

∂z

]
r=0

. (3.32)

Then, the net Lorentz force in z-direction, acting on the ring current with a gyrora-
dius rL, is

〈Fz〉 = −1

2
qv⊥rL

[
∂Bz

∂z

]
r=0

. (3.33)
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This force leads to an accelerated motion of the guiding center along the magnetic
field. Hence, the case of a longitudinal gradient does not lead to a new drift velocity.
Drift motion is only found when the averaged force is perpendicular to the magnetic
field direction

3.3.2 Magnetic Moment

The circular orbit of the particle about the central field line in the geometry of
Fig. 3.8 can be considered as an electric current. This ring current has an associated
magnetic moment μ, which is the product of the current I flowing at the edge of a
circular disk with Larmor radius rL and the area A of this disk. The current is given
by the charge q performing a revolution in the gyroperiod T :

|μ| = I A = |q|
T

πr2
L = |q| ωc

2π
π

(
v⊥
ωc

)2

= mv2⊥
2B

= W⊥
B

. (3.34)

The magnetic moment is a vector that is antiparallel to the ambient magnetic field
B (Fig. 3.9) and—according to Lenz’s rule—weakens the external field. With this
definition of the magnetic moment, we can rewrite Eq. (3.33)

〈Fz〉 = −μ
∂Bz

∂z
. (3.35)

This shows that the gyrating particle experiences a force like a piece of diamagnetic
matter in an inhomogeneous magnetic field. The diamagnetism results from the left-
handed motion of a positive ion, which creates a magnetic dipole that is antiparallel
to the acting magnetic field. The same is true for electrons, which have the opposite
charge and the opposite sense of gyration.

Fig. 3.9 The magnetic
moment μ of a gyroorbit is
antiparallel to the magnetic
field. This makes a
magnetized plasma
diamagnetic

B

e
μ

3.4 Adiabatic Invariants

It is shown in classical mechanics that the action integral over a periodic orbit,∮
p dq, is a conserved quantity of the system. This concept can be extended to weak

gradients, in which the orbit is nearly periodic. The associated action integrals then
are no longer strict invariants but become adiabatic invariants.
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3.4.1 The Magnetic Moment as First Invariant

When we assume that the diamagnetic force in Eq. (3.35) is a valid description, we
obtain an energy relation for the motion of the guiding center by multiplying with vz

mv̇z = −μ
∂B

∂z

mvz v̇z = −μ
∂B

∂z

dz

dt
(3.36)

d

dt

(
1

2
mv2

z

)
= −μ

dB

dt
.

Here, dB/dt is the change in the magnetic field, which the guiding center experi-
ences by moving along the central field line. For the guiding center, we have no
radial magnetic field and therefore can drop the index z. A time-invariant magnetic
field does not alter the kinetic energy, as can be seen from F·ds = q(v×B)·v dt = 0,
because the Lorentz force is always perpendicular to the trajectory. The change in
kinetic energy can then be written as

0 = d

dt

(
1

2
mv2

z + 1

2
mv2⊥

)
= d

dt

(
1

2
mv2

z + μB

)
. (3.37)

Combining Eqs. (3.36) and (3.37) one obtains

− μ
dB

dt
+ d

dt
(μB) = 0 (3.38)

and finally

dμ

dt
= 0 . (3.39)

Hence, the magnetic moment is conserved to the same degree of accuracy as the dia-
magnetic force gave a sufficiently accurate description of the motion of the guiding
center.

3.4.2 The Mirror Effect

The adiabatic invariance of the magnetic moment can be used to calculate the con-
finement properties of a magnetic mirror field. A natural magnetic mirror is given
by the Earth’s magnetic dipole field. Following a field line from the equator towards
the pole, one observes the increase in field line density and hence in magnetic flux
density (see Fig. 3.10a). Therefore, charged particles can be trapped between the
mirrors at North and South pole.

Magnetic mirrors can also be formed in the laboratory, e.g., between a set of
circular magnetic field coils, as shown in Fig. 3.10b. When the distance of the coils
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Fig. 3.10 (a) Mirror action of
the Earth’s dipole field.
Following a field line from
the equator to the pole the
magnetic field increases
B1 > B0. (b) Magnetic
mirror created in the
laboratory by a set of field
coils

is larger than their radius, the magnetic field becomes inhomogeneous along the axis
of the system, as can be seen by the high density of field lines at the coil position
and the lower density in the midplane. We will now discuss the confinement of a
charged particle that moves along the central field line of this system.

At any position, the velocity components of the particle are vz along the axis and
v⊥ = (v2

x + v2
y)

1/2, which is the speed of gyromotion. In the symmetry plane of the
mirror the magnetic field is B = B0 and there the particle has initial velocities v⊥0
and vz0. The maximum magnetic field B = Bm is found in the vicinity of the mirror
coils. The motion of the particle is governed by the conservation of energy and the
adiabatic invariance of the magnetic moment, which can be written as

v2⊥ + v2
z = v2⊥0 + v2

z0 = v2
0

v2⊥/B = v2⊥0/B0 . (3.40)

When the particle moves into regions of higher magnetic field, its parallel energy is
consumed by the diamagnetic force. At the same time, the gyrofrequency increases,
which leads to a larger kinetic energy of the gyromotion. A reflection by the mag-
netic mirror occurs when the energy of parallel motion becomes zero at any position
before B attains its maximum value Bm. Solving Eq. (3.40) for vz = 0 and setting
v⊥0 = v0 sin θ gives

0 = v2
z = v2

0

(
1 − B

B0
sin2(θ)

)
. (3.41)

This means that the stopping point of a particle is only dependent on the starting
angle θ with respect to the magnetic field. It is independent of the magnitude of the
initial velocity v0. All particles with a starting angle θ > θm are confined, while the
particles with θ < θm can overcome the mirror point Bm and form the loss cone in
velocity space. The angle of the loss cone is

θm = arcsin
(√

B0/Bm

)
. (3.42)
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The quantity Rm = Bm/B0 is called the mirror ratio, which defines the confinement
quality of a mirror machine. A large mirror ratio is equivalent to a small loss-cone
angle.

In Fig. 3.11 a mirror field is shown that is produced by a pair of circular currents,
each of magnitude I , at positions z = ±L/2 and radius R. From Biot and Savart’s
law, the magnetic field on the axis of a current ring is

B(z) = μ0

2

I R2

(R2 + z2)3/2 . (3.43)

Hence the total mirror field becomes Btot = B(z − L/2) + B(z + L/2). For R =
0.15 m, L = 0.3 m, I = 500 A the mirror ratio becomes Bm/B0 = 1.48 and the
half-angle of the loss-cone θ = 55.3◦.

Fig. 3.11 Mirror field of an
arrangement of two ring
currents. The positions and
radius of the ring currents are
indicated

– –
z (m)

B
 (

T
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3.4.3 The Longitudinal and the Flux Invariant

According to the three degrees of freedom of motion, we can define exactly three
adiabatic invariants. The first is the magnetic moment, which corresponds to the
periodic gyromotion. In a magnetic mirror, trapped particles are bouncing back and
forth, on a slower time scale, between the reflection points, which can be seen in
Fig. 3.12. There, an energetic proton is trapped in the dipole field of the Earth. With
this secondary periodic moment, we associate the second adiabatic invariant J , also
called the longitudinal invariant,

J =
∫

v‖dl . (3.44)

The integral is taken between the reflection points. The invariant J is more fragile
than the fairly robust magnetic moment μ.

The third periodic motion, on an even longer time scale, is associated with the
toroidal drift of this bouncing trajectory in the curved dipole field (see Fig. 3.12),
which leads to a circular motion in the equatorial plane. Associated with this slow
periodic drift motion is the third or flux invariant Φ, which represents the total
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Fig. 3.12 Mirror effect and particle drifts in the Earth’s dipole field. A 10 MeV proton with a pitch
angle of θ = 30◦ starting at 3RE is trapped in the Earth magnetic field. The initial field line, on
which the particle motion started, is shown by the dashed curve. The particle performs a hierarchy
of three periodic motions: gyration about the field line, bouncing between the mirror points, and a
slow (toroidal) drift in the equatorial plane

magnetic flux encircled by the drifting bounce-trajectory. Φ is an even more fragile
quantity than J , and is rarely used for calculations.

3.5 Time-Varying Fields

3.5.1 The Polarization Drift

Up to now, only stationary but inhomogeneous fields have been considered. We will
now allow a time-varying electric field E = (Ex (t), 0, 0), which is again assumed
perpendicular to the stationary magnetic field B = (0, 0, Bz). For simplicity, we
consider the case when the electric field is increasing at a constant rate dEx/dt =
const. The equation of motion in the perpendicular plane

v̇ = q

m
(E(t) + v × B) (3.45)

can be decoupled and yields for the x direction:

v̈x = −ω2
c

[
vx ∓ 1

ωc

Ėx

Bz

]
. (3.46)

The upper sign corresponds to positive ions, the lower to electrons. Transforming
to a moving frame of coordinates ṽx = vx ∓ Ėx/ωc Bz , one obtains the familiar
circular orbits in this moving frame. Hence, the trajectory is the superposition of
gyromotion and a polarization drift vp in the direction of the electric field,

vp = ± 1

ωc

Ėx

Bz
, (3.47)
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which has a constant speed because of the assumed constant rate Ėx . At the same
time, there is a time-dependent E×B-drift

vE = −Ex (t)/Bz . (3.48)

The polarization drift can also be considered as a switch-on effect of the plasma,
which reflects the inertia of the particles. This can be seen most clearly when the
electric field is suddenly switched on at t = 0, as shown in Fig. 3.13a. At t = 0 a
particle, which is initially at rest, first moves in the direction of the electric field until,
with increasing speed, the Lorentz force bends its trajectory into a perpendicular
direction. This effect has opposite signs for positive ions and electrons, which leads
on average to a net displacement of the charge by one gyroradius in plus or minus
x-direction and represents a net polarization of the plasma.

For a linearly increasing electric field, cf. Fig. 3.13b, we obtain an ion polar-
ization drift in the electric field direction. The electron polarization drift has the
opposite sign. Hence, an increasing electric field gives rise to a polarization current.
Note that the polarization drift is based on the motion of the guiding center. Since
the E×B drift has now a linearly increasing speed, the trajectory of the guiding
center becomes a parabola, as shown by the dashed line in Fig. 3.13b.

Fig. 3.13 (a) Polarization by the sudden switch-on of an electric field perpendicular to a static
magnetic field. The ion trajectory is on average displaced by a gyroradius. (b) Polarization drift of
positive ions in a linearly increasing electric field and a perpendicular magnetic field. Note that in
both diagrams the scaling in y-direction is compressed with respect to the x-scaling. The motion
of the guiding center is indicated by dashed lines

3.5.2 Time-Varying Magnetic field

Here, we consider a gyrating particle with Larmor radius rL = v⊥/ωc in a homo-
geneous magnetic field B(t) that is slowly increasing. The time-varying magnetic
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field induces a loop voltage �U = πr2
L dB/dt along the gyroorbit of the particle

(Fig. 3.14). Hence, in one gyroperiod �t = 2π/ωc, the particle gains additional
kinetic energy �W⊥ = q�U . Then the energy gain rate is

dW⊥
dt

= q�U
ωc

2π
= 1

B

dB

dt
W⊥ . (3.49)

This gives the relation

dW⊥
W⊥

= dB

B
, (3.50)

which can be integrated to give W⊥/B = μ = const. Therefore, in a slowly time-
varying magnetic field the magnetic moment μ is conserved.

Fig. 3.14 Orbit of a positive
ion in a magnetic field that
increases slowly in time.
During each orbit the ion
gains energy from the
induced loop voltage �U

rL

U

B

+

3.6 Toroidal Magnetic Confinement

The problem of magnetic confinement in mirror fields is unsatisfactory because
Coulomb collisions (see Sect. 4.2.5) continuously scatter particles into the loss-cone
region of velocity space. These particles leave the mirror at both ends and represent
an intolerably large loss, which prevents a long confinement time. It suggests itself
to avoid these losses by bending the straight field lines into a torus, which removes
the end losses. These ring-shaped confinement schemes are known as tokamaks2

and stellarators.3 The avoidance of end losses comes at a prize, namely the inho-
mogeneity and curvature of the magnetic field.

Tokamaks and stellarators have the common feature that the toroidal magnetic
field is created by external field coils, as shown for a simple torus in Fig. 3.15. In
this Section we will discuss the basic ideas of plasma confinement in terms of the
single particle model.

The toroidal field is generated by field coils, which have a winding density n/ l
per unit length that is greater at the inner edge of the torus than on the outer edge.

2 Tokamak is a Russian acronym meaning toroidal chamber with magnetic field coils
3 Lyman Spitzer (1914–1997) originally devised a figure-eight stellarator. The name alludes to the
Latin word stella for star
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Fig. 3.15 Simple torus with
field coils that generate the
toroidal magnetic field. The
inset shows that the toroidal
magnetic field strength
decays as Bt ∝ 1/r

Hence, the magnetic field will be radially inhomogeneous, as can be seen by apply-
ing Ampere’s law

∮
H · ds = 2πr Ht(r) = nI . (3.51)

Here, the integration follows a field line of radius r which encircles the total current
nI , when n is the number of windings. This means that the toroidal magnetic flux
density Bt = μ0 Ht decreases radially as

Bt = μ0
nI

2πr
. (3.52)

In this inhomogeneous and curved magnetic field, charged particles experience the
combined toroidal drift Eq. (3.29), which is dependent on the sign of the charge
and effects charge separation in vertical direction. This charge separation leads to
the establishment of a vertical electric field that is responsible for a secondary E×B
drift driving both ions and electrons radially outwards (see Fig. 3.16).

Fig. 3.16 The toroidal drift
leads to charge separation and
a subsequent particle loss by
E×B drift

ExB
+++

---

E

Btor

3.6.1 The Tokamak Principle

The net outward drift of the particles in a simple magnetized torus can be compen-
sated by twisting of the toroidal field lines in such a way that a field line on the
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Fig. 3.17 Generation of a
rotational transform by an
induced toroidal current.
Only one yoke of the
transformer is shown. The
transformer of the JET
experiment has eight yokes,
see Fig. 1.17a

outside of the torus moves to the inside of the torus after a few revolutions about
the major axis of the torus. Such a rotational transform of the magnetic field can
be achieved by superimposing a poloidal magnetic field Bp. In a tokamak, such a
poloidal field is generated by inducing a toroidal current I t into the plasma ring,
which forms a one-turn secondary of a huge transformer. Fig. 3.17 shows the prin-
ciple of a tokamak and the twisting of the field lines.

While tokamaks have been successfully used to demonstrate energy gain by
fusion reactions (cf. Sect. 1.5), their operation is limited to some ten seconds
because of the necessity to ramp-up the magnetic field in the transformer to drive
the toroidal current by induction, which is ultimately limited by the saturation of
the transformer’s iron core. A mode of quasi-steady state operation can be achieved,
in principle, by driving the toroidal current by other means, for example by the
radiation pressure of intense radio waves or microwaves [61, 62].

4m 11m

(a) (b)

Fig. 3.18 (a) Field coil arrangements for the Wendelstein 7-A stellarator with planar toroidal field
coils and two pairs of helical windings. (b) Wendelstein 7-X stellarator with superconducting
modular field coils that simultaneously produce toroidal and poloidal fields. (Reproduced with
permission. c© IPP/MPG.)
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3.6.2 The Stellarator Principle

In a stellarator, the rotational transform is produced by external currents. This
makes the stellarator attractive because it allows steady-state operation. In a classical
stellarator, the poloidal field is generated by pairs of conductors that are wound in a
helix around the torus. Figure 3.18a shows such an arrangement for the Wendelstein
7-A stellarator [63]. The plasma has an elliptical cross-section with sudden bends
and changes in the orientation of the major axis.

Modern stellarator concepts use non-planar field coils, which produce both a
toroidal and a poloidal magnetic field. The most recent development is the stellara-
tor Wendelstein 7-X, which is under construction in Greifswald, Germany. A sketch
of the arrangement of the superconducting modular coils is shown in Fig. 3.18b The
vacuum vessel and the cryostat are omitted.

3.6.3 Rotational Transform

The angle ι (iota), by which a magnetic field line is twisted after one revolution
about the torus is easily understood for a tokamak and can be estimated as follows.
Let us denote the major radius of the torus by R and the minor radius of the plasma
by a. Further, r is a radial coordinate measuring from the center of the plasma.
Assuming that the current density is approximately homogeneous in the plasma, we
have a current density flowing in toroidal direction

jt = I t

πa2
, (3.53)

where I t is the total toroidal current. The poloidal magnetic field Hp follows from
Ampere’s law

2πr Hp = I (r) = πr2 j t . (3.54)

The poloidal magnetic flux density Bp then increases with r

Bp = μ0
I t

2πa2 r . (3.55)

The poloidal angle, by which a field line is twisted around the torus can be estimated
in the following way.
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Fig. 3.19 The rotational
transform ι(r) is estimated by
straightening a torus into a
cylinder

L = 2πRBp

Bt

2a

ι

Consider the torus being cut and bent into a cylinder of length L = 2π R and
radius r as shown in Fig. 3.19. Then, the arc segment r ι(r) is given by

r ι(r) = 2π R
Bp(r)

Bt
= 2π R

μ0 I t

2πa2 Bt
r

and ι(r) = μ0 I t R

a2 Bt
, (3.56)

which is independent of r . Hence, the transformation angle is the same for all radial
positions and the magnetic field is unsheared. In a real tokamak, however, the current
density peaks in the center of the plasma and the magnetic field is sheared. The
rotational transform is defined as ι/2π , and its reciprocal value q = 2π/ι is called
the safety factor, which is the number of toroidal revolutions a field line has to make
to complete one poloidal revolution.

Many detailed investigations of plasma confinement were made in stellarators,
which can be operated in a steady state mode. The field lines can be visualized
by producing a localized electron beam that travels along the field line and hits a
small phosphor screen. Moving the phosphor screen in a section of the torus, the
trajectory of the electron beam is intersected after different numbers of revolutions.
The totality of these luminous dots can be recorded photographically with a long
time exposure, as shown in Fig. 3.20a. This kind of representation is known as a
Poincaré section.

When ι/2π �= n/m, i.e., an irrational number, the field lines form a set of nested
magnetic surfaces, see Fig. 3.20a. This topology changes when a rational value
of the rotational transform is approached, here ι/2π = 1/2. Figure 3.20b shows
that the magnetic surfaces breaks up and forms two additional magnetic islands.
At rational values of the rotational transform, the plasma confinement is dete-
riorated, as was shown in early experiments on the Wendelstein IIa stellarator
(Fig. 3.21). There, the plasma density generally increased with the applied magnetic
field, but pronounced minima appeared at ι/2π = 1/3, 1/4, 1/5 . . ..
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(a) (b)
z

R R

z

magnetic
islands

Fig. 3.20 Visualization of the rotational transform by an electron beam and a small movable phos-
phor screen in the Wendelstein 7-AS stellarator. (a) Nested magnetic surfaces for ι/2π = 0.47. (b)
Magnetic islands form at ι/2π = 1/2. (Reprinted with permission from [64]. c© 1993, IAEA.)

Fig. 3.21 Plasma density in the Wendelstein IIa stellerator for a toroidal magnetic field of 0.6 T
and varying rotational transform. The electron density breaks down at rational values ι/2π =
1/3, 1/4, 1/5 . . .. (Reprinted with permission from [63]). c© IPP/MPG

3.7 Electron Motion in an Inhomogeneous Oscillating
Electric Field

Up to this point, we have only discussed the motion of charged particles in slowly
varying magnetic fields. In this last Section, we will study the motion of electrons in
an inhomogeneous oscillating electric field. This is a simplified approach to under-
stand the behavior of electrons in radio-frequency or laser fields.

3.7.1 The Ponderomotive Force

For simplicity, we use a non-relativistic description of electron motion and con-
sider only an inhomogeneity along the field direction x , which gives the equation of
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motion as

ẍ = q

m
E(x) cos(ωt) . (3.57)

We have to calculate the force at the instantaneous position x(t) of the electron. An
analytic treatment of the problem is possible when we apply perturbation theory,
retain terms up to second order, i.e., x(t) = x0 + x1(t) + x2(t), and identify x0 as
the starting position of the electron. The electric field is assumed to be of first order.
We further expand the spatial evolution of the electric field to first order

E(x) ≈ E(x0) + x1(t)
d

dx
E(x0) . (3.58)

Note that the product x1 E ′ is already of second order, so no contribution from x2 is
needed. Then, in first order, Newton’s equation reads

ẍ1 = q

m
E(x0) cos(ωt), (3.59)

from which we immediately obtain the trajectory

x1(t) = − q

mω2
E(x0) cos(ωt) . (3.60)

In second order, we obtain

ẍ2 = q

m
x1(t)

d

dx
E(x0) = − q2

m2ω2
E(x0)

d

dx
E(x0) cos2(ωt) . (3.61)

Noting that cos2(α) = 1
2 [1 − sin(2α)], the electron experiences a fast acceleration

at 2ω, which we are not interested in, and a mean acceleration

〈ẍ2〉 = − q2

2m2ω2 E(x0)
d

dx

[
E2(x0)

]
= − q2

4m2ω2

d

dx

[
E2(x0)

]
, (3.62)

in which the average is taken over the fast time scale and the mean particle position
is replaced by x2(t). The associated force

Fp = − q2

4mω2

d

dx

[
E2(x0)

]
(3.63)

is called the ponderomotive force, which drives the electron into regions of dimin-
ishing field amplitude. Note that we do not end up with a new type of constant drift
velocity.
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The Basics in a Nutshell

• The complex trajectory of a charged particle in a magnetic field has been
decomposed into a hierarchy of (periodic) motions

1. gyration about the field line at the cyclotron frequency,
2. periodic bouncing between mirror points,
3. curvature and gradient drift, which can lead to a very slow periodic

motion about the axis of the magnetic mirror.

• Each of these periodic motions is associated with an adiabatic invariant,
which has a decreasing degree of conservation: the magnetic moment, the
longitudinal invariant, and the flux invariant. Therefore, in the guiding cen-
ter model, the real particle is replaced by a small ring current with an asso-
ciated magnetic moment.

• The guiding center of this ring current performs various types of drift
motion

E×B drift vE = (E × B)/B2

Gravitational drift vg = (m/q)(g × B)/B2

Gradient drift v∇ B = (m/q)( 1
2v

2⊥/R2
c )(Rc × B)/B2

Curvature drift vR = (m/q)(v2
z /R2

c )(Rc × B)/B2

Polarization drift vp = (m/q)(∂E/∂t)/B2

• In a tokamak, the twist of the confining magnetic field is effected by the
toroidal current, which is induced by a big transformer with the plasma
torus as secondary winding. The rotational transform of the field lines
counteracts the losses arising from plasma drifts.

• In a stellarator, the rotational transform is effected by external helical cur-
rents. Modern stellarators use modular coils which produce both the con-
fining magnetic field and the rotational transform.

Problems

3.1 Consider a cylindrical straight wire of radius a with a homogeneous distribution
of current density inside. Use Ampere’s law to derive the azimuthal magnetic field
Hϕ(r) for r < a and r ≥ a.
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3.2 Consider now a cylindrical discharge tube, in which the plasma density profile
and the associated current distribution is parabolic:

j (r) = j0

(
1 − r2

a2

)
.

What is the magnetic field distribution Hϕ(r) for r < a in this case?

3.3 (a) What is the electron cyclotron frequency resulting from the Earth magnetic
field at the author’s location? (c.f. Sect. 3.1.3)
(b) What is the gyroradius of an electron with 10 eV kinetic energy in this field?

3.4 (a) The magnetic field created by a dipole of magnetic moment M = Mez reads
in cartesian coordinates:

B(r) = μ0

4π

3r(r · M) − r2M
r5 .

Find the corresponding components Br and Bθ in spherical coordinates (r, θ).
(b) In the equatorial ionosphere the horizontal component of the Earth magnetic
field is approximately 30 μT. Calculate the dipole moment at the Earth center that
would generate such a magnetic field.

3.5 (a) Calculate the gradient of the Earth magnetic field at the magnetic equator
at an altitude of 500 km and the radius of curvature of a magnetic field line, Rc =
|Bθ /(dBθ /dr)|.
(b) What is the speed of the gradient drift and curvature drift for electrons, which
have 3 eV kinetic energy in parallel and perpendicular motion?

3.6 Determine the trajectory [x(t), y(t)] of an electron in crossed fields B =
(0, 0, Bz) and E = (Ex , 0, 0), when the electron is initially at rest, v(t = 0) = 0.

3.7 The vector of the magnetic field is tangent to the field line. Therefore, the dif-
ferential equation for a magnetic field line is

ds
dt

= eB .

Here, s = (x, y, z) is a point on the field line and t a parameter, which makes
tick-marks along the trajectory. Write the defining equation for the field line in
components, eliminate t , and show that the equation for a magnetic field line in
the x–z plane reads

dz

dx
= Bz

Bx
.
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Solve this differential equation for the dipole field given in Problem 3.4 by separating
the variables and show that the field line is given as

z(x) =
√

x2/3
0 x4/3 − x2 ,

where x0 marks the intersection of the field line with the x-axis.



Chapter 4
Stochastic Processes in a Plasma

“When I use a word”, Humpty Dumpty said, in rather a
scornful tone, “it means just what I choose it to mean—neither
more nor less.”
“The question is”, said Alice, “whether you can make words
mean so many different things.”

Lewis Carroll, Through the Looking-Glass

The description of the hot gas of electrons and ions forming a plasma involves a
number of non-deterministic or stochastic processes that require a statistical descrip-
tion. The plasma constituents have a wide spread of velocities and perform collisions
between the charged particles, or with the gas atoms of the parent gas. The behavior
of the plasma as a whole can no longer be reduced to the deterministic motion
of individual particles in prescribed fields. Rather, the large number of particles
introduces uncertainties that force us to describe the plasma by average quantities.
For example, the average motion depends on macroscopic quantities like tempera-
ture and density gradients, which generate particle fluxes or electric currents. This
Section discusses the stochastic motion of particles and introduces simple statistical
concepts to describe typical transport processes in gas discharges. To illustrate the
concepts, typical applications are given in gas discharges, in ion thrusters designed
for spacecrafts, or in the heat balance for nuclear fusion.

4.1 The Velocity Distribution

4.1.1 The Maxwell Velocity Distribution in One Dimension

In thermodynamic equilibrium the particles forming a gas attain a Maxwell velocity
distribution, which reads in one spatial dimension

f (1)
M (vx ) = a exp

(
− mv2

x

2kBT

)
. (4.1)

Here, f (1)
M (vx )dvx is the number of particles per volume with velocities between

vx and vx + dvx . kB = 1.38 × 10−23 J K−1 is Boltzmann’s constant and T the

A. Piel, Plasma Physics, DOI 10.1007/978-3-642-10491-6_4,
C© Springer-Verlag Berlin Heidelberg 2010

73



74 4 Stochastic Processes in a Plasma

thermodynamic temperature. a is a normalization factor. The particle density n is
given by the integral of fM over all velocities

n =
∞∫

−∞
f (1)
M (vx )dvx . (4.2)

Hence, the normalization constant a is

a = n

(
m

2πkBT

)1/2

. (4.3)

The width of the distribution function is determined by the temperature as shown in
Fig. 4.1a. Defining a characteristic velocity vT by

vT = (2kBT/m)1/2 , (4.4)

we see that the Maxwellian f (1)
M (vx ) ∝ exp[−(vx/vT )2] takes half its maximum

value at v1/2 = (ln 2)1/2vT = 0.833vT . This characteristic velocity vT should not
be confused with the mean thermal speed defined below.

The one-dimensional Maxwell distribution can easily be generalized to three
spatial dimensions by taking the product of velocity distributions for each spatial
direction and renormalizing to the particle density

f (3)
M (v) = a′ f (1)

M (vx ) f (1)
M (vy) f (1)

M (vz)

= n

(
m

2πkBT

)3/2

exp

(
−m(v2

x + v2
y + v2

z )

2kBT

)
. (4.5)

− − −

Fig. 4.1 (a) One-dimensional Maxwell distribution f (1)
M (vx ) for two different temperatures. Solid

line: T1, dashed line: T2 = 2T1. (b) Maxwell distribution fM(v) of particle speeds
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Again, f (3)
M (v)dvx dvydvz is the density of particles which have a velocity vector

with components lying between vx . . . vx +dvx , vy . . . vy +dvy , and vz . . . vz +dvz .

4.1.2 The Maxwell Distribution of Speeds

When we are not interested in the distribution of a specific velocity component of
a gas but want to describe the distribution of particle speeds without caring for the
orientation of motion, we can define the Maxwell distribution of particle speeds
v = |v|

fM(v) = 4πv2n

(
m

2πkBT

)3/2

exp

(
− mv2

2kBT

)
. (4.6)

The additional factor 4πv2 arises from the fact that the volume element in three-
dimensional velocity space is a thin sheet on the surface of a sphere. Hence, for
v � vT the distribution of speeds rises like v2 because of the increasing number of
combinations of vx , vy , and vz that lead to the same speed v = (v2

x +v2
y +v2

z )
1/2, see

Fig. 4.1b. The Maxwellian of speeds takes a maximum at vT (see Problem 4.1). In
other words, the characteristic velocity vT is the most probable speed of the gas. For
larger speeds, the Maxwellian distribution of speeds decays because the exponential
decreases much more rapidly than the growth of the spherical surface in velocity
space.

4.1.3 Moments of the Distribution Function

The mean thermal speed of a gas is defined as the first moment of the distribution
of speeds

vth = 1

n

∞∫
0

fM(v)v dv =
(

8kBT

πm

)1/2

, (4.7)

which is 13% larger than vT . Likewise, the mean kinetic energy of a gas is defined
by the second moment of the distribution of speeds

〈Wkin〉 = 1

n

m

2

∞∫
0

fM(v)v2dv = 3

2
kBT . (4.8)

The evaluation of these two integrals is left to the reader (see Problems 4.2 and 4.3).
The relation between mean kinetic energy and temperature is often a source of

confusion in plasma physics. There, it is common practice to convert temperature



76 4 Stochastic Processes in a Plasma

units into energy units by the relation W = kBT . In this language, 1 eV = 11,600 K,
which brings typical temperatures in gas discharges to small numbers of a few
eV. Nevertheless, from Eq. (4.8), an electron gas of 10 eV temperature has a mean
kinetic energy of 15 eV.

4.1.4 Distribution of Particle Energies

For many calculations we need the particle distribution function on an energy scale
W = 1

2 mv2. For this purpose, we must perform a transformation from speed to
energy, which conserves the number of particles in a certain velocity and energy
interval, respectively, fM(v)dv = FM(W )dW . With dW = mv dv, we obtain

FM(W ) = n
2√
π

1

(kBT )3/2
W 1/2 exp

(
− W

kBT

)
. (4.9)

For gas discharges, the terminology electron energy distribution function (EEDF)
and electron energy probability function (EEPF) is used. For a Maxwellian, the
EEDF F(W ) can be identified with FM(W ), but in most gas discharges F(W ) is
a non-Maxwellian distribution. The EEPF is defined as

g(W ) = W−1/2 F(W ) . (4.10)

In a semilog plot, log[g(W )] vs. W , we obtain a straight line when the distribution is
Maxwellian (see Fig. 4.2). Note that the slope of the EEPF and EEDF in the semilog
plots are slightly different. Therefore, the EEPF must be used for directly reading
the temperature.

Fig. 4.2 Comparison of
EEDF (solid line) and EEPF
(dashed line) for a
Maxwellian distribution

–

–

–
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We will see in Sect. 7.5.1 that the EEPF is the immediate result from evaluating
the second derivative of a Langmuir probe characteristic. The particle density can
be obtained from the integral of the EEDF

ne =
∫ ∞

0
FM(W )dW (4.11)

and the effective temperature

3

2
kBTe = 1

ne

∫ ∞

0
W FM(W )dW . (4.12)

4.2 Collisions

In this section, we first introduce the concept of atomic cross sections, which define
the collisions between charged plasma particles and atoms in gas discharges. Later,
we discuss Coulomb collisions between charged particles, which are primarily
important for fully ionized hot plasmas.

4.2.1 Cross Section

The probability that an electron hits an atom can be described by a geometrical
quantity, the cross section of an assumed atomic sphere. Such a classical picture of
fine particles hitting a target is also valid in quantum mechanics when the de Broglie
wavelength of the electron is small compared to the size of the atom. Collisions
between atoms, or between an ion and atom, can often be approximated by collisions
of two billiard balls with radii r1 and r2. The concept of cross section assumes
that the projectile is point-like and the target is assigned the effective cross section.
Hence, a collision between billiard balls is defined by the sum of the collision radii
σ = π(r1 + r2)

2, as shown in Fig. 4.3.
The real situation for electron-atom collisions is more complex. The fact that

the cross section for elastic electron collisions in argon shows a minimum at small
energies (Ramsauer effect) can be understood as an interference phenomenon when

Fig. 4.3 Collision between
two spheres of radius r1 and
r2. The collision is described
by a point-like particle hitting
an effective cross section
σ = π(r1 + r2)

2

r1 rz

r +r1 2
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Fig. 4.4 Total cross-section
for collisions of electrons
with noble gas atoms. At low
energy, the atoms show the
so-called Ramsauer minimum
at small collision energies
(Data taken from [65])

Xe

Kr

Ar

0
0

20

40

2 4 51 3

σ 
(1

0–2
0 

m
2 )

v (106 m s–1)

the electron’s de Broglie wavelength matches the atom size. The total collision cross
section for electrons in the noble gases Ar, Kr and Xe [65] is shown in Fig. 4.4.

4.2.2 Mean Free Path and Collision Frequency

For calculating the collision probability we assume a directed stream of point-like
particles with a velocity v that penetrate a gas volume. The targets have a cross
section σ (Fig. 4.5). We consider a cylinder of entrance area A and length �z =
v�t . This volume contains Na atoms acting as target spheres and the density of
these targets is na = Na(A�z)−1. The differential probability for a collision in this
infinitesimal volume is then the ratio of blocked area Naσ , i.e., the shadow of the
particles at the exit plane, to the total area A.

�w = Naσ

A
= naσ�z . (4.13)

The macroscopic probability to traverse a distance z without any collision is the
product of the differential probabilities to suffer no collision in any of the interme-
diate steps

Fig. 4.5 Cross-section and
mean free path A v tΔ
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w(z) = lim
�z→0

z/�z∏
i=1

(1 − naσ�z) = lim
�z→0

(1 − naσ�z)z/�z

= exp(−naσ z) = exp(−z/λmfp) . (4.14)

We call the quantity λmfp = (naσ)−1 the mean free path. Because λmfp is inversely
proportional to the density of targets the mean free path for plasma particles in the
neutral gas background scales as λmfp ∝ p−1

gas. The collision frequency is defined as

νcoll = σ v na (4.15)

and is the reciprocal of the mean free time τcoll between two interactions.

Pressure Units

The international unit of gas pressure is the Pascal (1 Pa = 1 Nm−2). Despite
many attempts of introducing metric SI units, there are still different units in
use. The conversion between these units is compiled here:

1 bar = 105 Pa
1 torr = 133 Pa
1 Pa = 7.52 mtorr
1 bar = 0.9869 atm (phys. atmosphere)
1 atm = 760 torr

In the older literature, gas discharge conditions are often referred to the atom
density at 1 torr pressure and T = 273 K, which is na = 3.54 × 1022 m−3.

4.2.3 Rate Coefficients

Up to now, we have only considered the collisions of a monoenergetic particle hit-
ting a target. In a gas discharge, we may be interested in the number of ionizing
collisions per second that are caused by a Maxwellian electron distribution with
a temperature Te. This leads to the definition of rate coefficients for ionization or
excitation.

The rate coefficient for ionization by electrons is defined as the average of σionv

over the actual velocity probability function, (1/ne) fM,e(v), which is normalized to
unity,

〈σv〉 = 1

ne

∞∫
0

σion(v)v fe(v) dv , (4.16)
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and has the dimension volume per second. Rate coefficients for other processes are
defined in a similar way. The average number of ionizing events by a single electron
is obtained as the ionization frequency

νion = na〈σionν〉 = na

ne

∞∫
0

fM,e(ν)σion(ν)νdν . (4.17)

The lower bound of the latter integral can be chosen at the ionization threshold Wion.
The total number of ionization processes per volume and second is

Sion = nena〈σionv〉 . (4.18)

For ionization of atoms by electron collisions, we need not worry about the
proper relative velocity of the collision partners, which is determined by the electron
velocity in the laboratory frame because the electron mass is much smaller than the
atom mass. The situation is different for collision partners of comparable masses m1
and m2. Then, the reduced mass mr = m1m2(m1 + m2)

−1 must be inserted in the
distribution function fM(v) that is used in (4.17).

Typical electron temperatures in low-pressure gas discharges are a few electron
volts only, say 3 eV in an argon discharge, which has an ionization energy of 15.8 eV.
This means that the ionization is mostly due to electrons in the tail of the distri-
bution function. The ionization rate is therefore determined by the overlap of the
decreasing Maxwellian and the increasing ionization cross section, as indicated by
the shaded region in Fig. 4.6. Because electrons in this overlap regime loose energy
by the ionization process, the true distribution function will be depleted above the
ionization threshold. Therefore, in accurate calculations, one has to use such a self-
consistent distribution function.

σion(W)

W

FM(W)

Fig. 4.6 The ionization frequency is determined by the overlap of the distribution function FM(W )

and the ionization cross section σion(W ). Only the shaded tail of the distribution function con-
tributes to ionization

4.2.4 Inelastic Collisions

Inelastic collisions of electrons and ions can lead to excitation or ionization of
atoms. Here, we are only interested in a comparison of the cross sections for ion-
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ization and elastic scattering. Experimental data for the ionization cross sections for
helium and argon atoms are shown in Fig. 4.7 [66].

Below the ionization energy Wion (He: 24.6 eV, Ar: 15.8 eV) the ionization cross
section is zero; it rapidly rises to take a flat maximum at about 4 Wion and decays
like W −1/2 at high projectile energies. Generally, the ionization cross section is
two orders of magnitude smaller than the cross section for elastic collisions. The
ionization frequency in a plasma can be calculated from Eq. (4.17).

Fig. 4.7 Ionization
cross-sections for helium and
argon atoms from tabulated
values published in [66]

–

–

–

4.2.5 Coulomb Collisions

Collisions between charged particles play an important role in fully ionized plas-
mas. There, the scattering of electrons by ions is responsible for the resistivity of a
hot plasma. Collisions between electrons do not change the total momentum of the
electron gas and therefore do not affect the conductivity. However they determine
classical electron diffusion.

In this paragraph, a simplified description of Coulomb collisions is presented.
The trajectory of an electron in the field of an isolated ion is shown in Fig. 4.8. The
impact parameter b is assumed to be smaller than the Debye length, which justifies
the approximation by a Coulomb force. For simplicity, we split the hyperbolic orbit
into three sections, the two asymptotes with impact parameter b and a nearly circular
arc. The time of interaction can be estimated as τ ≈ b/v. For large deflection angles,
the change in momentum is roughly equal to the initial momentum �p ≈ p, and can
be estimated from the Coulomb force and the interaction time, �p ≈ FCτ . These
considerations yield
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Fig. 4.8 Geometry of an
electron-ion collision

mev = e2

4πε0b2

(
b

v

)
= e2

4πε0bv
(4.19)

and give an estimate for the impact parameter bπ/2 for 90◦ scattering

bπ/2 = e2

4πε0mev2 . (4.20)

The associated cross section for 90◦ collisions is σπ/2 = πb2
π/2 and the electron-ion

collision frequency becomes

νei = nσπ/2v = ne4

16πε2
0m2

ev
3
. (4.21)

We get an order-of-magnitude estimate for the plasma resistivity, η = meνei/ne2, at
a plasma temperature T when we assume v = (kBT/me)

1/2

η = πe2m1/2
e

(4πε0)2(kBT )3/2
. (4.22)

This rough estimate already shows that the resistivity is independent of the electron
density and scales with T −3/2. These simple arguments were based on large deflec-
tion angles. A more thorough treatment of the problem leads to the Spitzer resistivity
[67]

ηs = πe2m1/2
e

(4πε0)2(kBT )3/2
lnΛ . (4.23)

that contains a correction factor ln(Λ) ≈ ln(λD/bπ/2) = ln(4πND), called the
Coulomb logarithm that is related to the number of particles ND in a Debye sphere.

A hot plasma of T = 10 keV has a resistivity η = 5 · 10−10 �m, which is lower
than the resistivity of copper ηCu = 2 · 10−8 �m. This explains why a hot plasma
behaves like a nearly perfect conductor. We will discuss Coulomb collisions in more
detail in Chap. 10 on dusty plasmas.
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4.3 Transport

Transport processes in plasmas comprise mobility-limited motion, electric currents
described by conductivity, and free or ambipolar diffusion. Here, only steady-state
processes will be discussed. The section ends with a discussion of the influence of
a magnetic field on mobility.

4.3.1 Mobility and Drift Velocity

In a gas discharge with a low degree of ionization, the motion of electrons and ions
is governed by the applied electric field and collisions with the atoms of the back-
ground gas. Most of the electron collisions are elastic. Therefore, we will neglect
ionizing collisions in the calculation of friction forces. Because of the equal mass
of positive ions and atoms of the parent gas, the momentum exchange between the
heavy particles is very efficient. Besides elastic scattering, the process of charge
exchange plays an important role, in which a moving ion captures an electron and
leaves a slow ion behind. In the momentum balance this process is equivalent to a
head-on collision in a billiards game.

A cartoon of electron motion in a gas background is shown in Fig. 4.9. In the
collision between a light electron with a heavy atom the momentum transfer is small.
Rather, the incoming electrons experience a random redirection of their momentum.
The trajectory is a sequence of parabolic segments. Since we have no diagnostic to
follow the trajectories of individual electrons, we must be content with evaluating
the average motion of an ensemble of electrons.

The equation of motion for an individual electron can be written as

mev̇e = −eE +
∑

k

me�vkδ(t − tk) . (4.24)

Here me �vk is the momentum loss in the kth collision. By averaging this equation
over many collisions we obtain the mean drift velocity 〈ve〉. Then, the sum on the
r.h.s. of Eq. (4.24) becomes me〈�ve〉τ−1

coll, which represents the average momentum

Fig. 4.9 Cartoon of an
electron trajectory in a
homogeneous electric field.
The trajectory is interrupted
by elastic collisions with
neutral atoms

vd

E
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loss per unit time. τcoll is the mean free time between two collisions defined in
Eq. (4.15).

The elastic scattering of electrons on atoms is almost isotropic [68]. Therefore, on
average, the electron loses its mean momentum mev̄e and we can write the equation
of motion for an average electron

m ˙̄v = −eE − mv̄νm . (4.25)

This average electron now moves in −E-direction. The quantity νm = 1/τcoll
is the effective collision frequency for momentum transfer. Because of the one-
dimensional motion, the vector symbol was dropped. The solution of this equation
of motion

v̄(t) = − eE

mνm

[
1 − e−νmt] + v(0)e−νmt (4.26)

has two parts: the first describes the approach to a terminal velocity

vd = − e

mνm
E = −μe E , (4.27)

the second the loss of memory on the initial velocity v0. The terminal velocity vd is
called the drift velocity, which is established when the electric field force is balanced
by the friction force. The mobilities of electrons and ions are defined as

μe = e

meνm,e
; μi = e

miνm,i
. (4.28)

4.3.2 Electrical Conductivity

The drift velocity of electrons and ions can be used to define the electric current
density

j = je + ji = n[(−e)vde + evdi] = ne(μe + μi)E = σ E . (4.29)

The linear relation between current density and electric field is the equivalent to
Ohm’s law. The quantity σ is the total conductivity1 of the gas discharge. Likewise
we define the conductivity of the electron and ion gas

σe,i = neμe,i = ne2

me,iνm
. (4.30)

1In the literature, the same symbol σ is used for the conductivity and the collision cross section,
or μ for the mobility and the magnetic moment, but confusion is unlikely because of the different
context
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This concept for the conductivity of a gas discharge is applicable at a low degree
of ionization ne/na. For a typical gas pressure of 1 mbar and room temperature the
atom density is na = 2.8 × 1022 m−3 whereas a typical electron density can be
ne ≤ 1019 m−3.

4.3.3 Diffusion

The average electron and ion motion in a gas discharge is determined by electric
field forces and by density gradients. The latter type of net motion is called diffusion.
What is diffusion on a microscopic scale? Let us consider a situation with a hot elec-
tron gas that has initially a density gradient in negative x-direction (see Fig. 4.10).

Since the electron thermal speed is much higher than that of the gas atoms we
assume that the gas atoms are at rest. Because of the density gradient it is evident
that per unit time more electrons will move to the right than to the left. This gives rise
to a net down-hill motion. However, this electron motion is inhibited by collisions
with the gas atoms. This combination of electron thermal motion and friction with
the neutral gas is described by a diffusion coefficient D. Again, we can only describe
the average motion in terms of a relation between the density gradient and a resulting
particle flux Γ e,i

Γ e,i = ne,iv̄e,i = −D∇ne,i , (4.31)

which is known as Fick’s law. Such relations were originally developed for neu-
tral gases, in which the motion of particles is determined by collisions with other
particles of the same species. In that situation, diffusion is the result from a greater
number of collision with neighboring particles of the same kind from the left than
from the right, which on average gives a net force directed down-hill.

Fig. 4.10 Cartoon of electron
diffusion in an electron
density gradient

Γ

n
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4.3.3.1 Ambipolar Diffusion

The situation for plasma electrons is quite different, because diffusion does not
mean that the electrons collide with other electrons. This effect can be neglected
for weakly coupled plasmas. Rather, as described above, the net motion is only
determined by their thermal motion and the inhomogeneous density distribution. In
this way, electron diffusion is similar to drift motion with the electron temperature—
together with the density gradient—providing the driving force. The same consid-
erations can be applied to ions.

Einstein had shown that diffusion coefficient and mobility are related by the
temperature of the gas

D

μ
= kBT

e
. (4.32)

This relation quantifies the arguments given above that electron diffusion in a neutral
gas background with a density gradient is driven by the temperature and inhibited
by electron-neutral collisions. Because the diffusion of electrons and ions leads to
different values of the particle fluxes, which would lead to unequal densities of
electrons and ions, the plasma reacts by forming a space charge electric field E .
This field reduces the electron diffusion and accelerates the ion diffusion until the
two fluxes reach a common value and the plasma remains macroscopically neutral.
This final state is called ambipolar diffusion when electrons and ions are lost at the
same rate and E is called the ambipolar electric field.

Figure 4.11 shows schematically how electron and ion density profiles in a
plasma look like under the influence of ambipolar diffusion. The difference between
the two profiles is exaggerated, for clarity. In the plasma center, a surplus of ions is
expected that generates a positive plasma potential in the plasma center because
electrons have the tendency to leave the system faster than ions. Therefore, a
slight surplus of electrons is found in the outer plasma region. The correspond-
ing space charge field E that accelerates the ions but slows down the electrons,
is indicated.

The particle fluxes for this diffusion process are given by

Γ e,i = ±nμe,iE − De,i∇n . (4.33)

Fig. 4.11 Cartoon of ion and
electron density profile for
ambipolar diffusion. The
plasma is bounded by walls at
x = ±a
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De,i are the diffusion coefficients for electrons and ions. The upper sign refers
to electrons, the lower to ions. For equal electron and ion fluxes (in the one-
dimensional geometry of Fig. 4.11) we obtain the set of equations

Γa = −nμe E − De
dn

dx

Γa = +nμi E − Di
dn

dx
, (4.34)

from which we can determine the ambipolar flux

Γa = −Da
dn

dx
(4.35)

and define the ambipolar diffusion coefficient

Da = Diμe + Deμi

μe + μi
. (4.36)

The inequality Di < Da < De shows that the ion diffusion is accelerated while the
electron diffusion is reduced. Finally, the ambipolar electric field is given by

E = − De − Di

μe + μi

1

n

dn

dx
. (4.37)

Using De 
 Di, μe 
 μi and Eq. (4.32) the ambipolar field can be estimated as

Ea ≈ −kBTe

e�
, (4.38)

where � = n/(dn/dx) is a characteristic length scale.
The ambipolar field is the typical response of a collisional plasma to the initial

imbalance of losses by an electron flux that exceeds the ion flux. The ambipolar field
holds the more diffusive electrons back and pulls the less diffusive ions towards a
higher speed (see Fig. 4.12).

Fig. 4.12 The ambipolar field
ties a mobile species to a less
mobile one and secures that
both agree on the same speed
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4.3.3.2 Diffusion in Cylindrical Geometry

A typical example for diffusion problems is the formation of a plasma density profile
in a homogeneous cylindrical glass tube of length L 
 a, where a is the tube radius.
In gas discharge physics, this situation is found in the positive column—a region of
quasineutral plasma that is characterized by the balance of plasma production and
radial ambipolar diffusion with subsequent recombination at the wall. The govern-
ing equation for the steady-state problem is the extended equation of continuity with
a source term by ionization

∂n

∂t
+ ∇ · (nv) = νion n . (4.39)

Here, we have neglected the small difference between ne and ni, which gives rise
to the ambipolar field and set ne ≈ ni = n. It is further assumed that the elec-
tron temperature is the same everywhere. This justifies to ascribe a fixed ionization
frequency to each electron. Therefore, the number of ionization processes per vol-
ume and second can be written as the product of electron density and ionization
frequency.

For steady state solutions, we can drop the term ∂n/∂t . Combining with Fick’s
law for ambipolar diffusion,

nv = −Da∇n , (4.40)

and assuming that the diffusion coefficient Da is constant, we obtain in cylindrical
coordinates

∂2n

∂r2 + 1

r

∂n

∂r
+ νion

Da
n = 0 . (4.41)

Here, we have assumed that, in steady state and in the long-tube limit, there is no
dependence on the coordinates ϕ and z. Equation (4.41) is the special case (m = 0)
of Bessel’s differential equation x2 y′′ + xy′ + (x2 − m2)y = 0. Requiring that the
plasma density has to be positive and must vanishes at the inner tube wall, r = a,
we obtain the radial density profile as

n(r) = n(0)J0

(
2.405r

a

)
. (4.42)

p1 = 2.405 is the first zero of the Bessel function J0(x). The differential equation
has a second solution, Y0(x), which has a singularity at r = 0 and can be discarded
here. The Bessel functions J0(x) and Y0(x) are shown in Fig. 4.13. Inserting the
solution Eqs. (4.42) in (4.41) yields a relation between the physical parameters νion
and Da
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νion = Da

(
2.405

a

)2

, (4.43)

which defines the steady-state condition νion = νloss. This means that the frequency
at which a plasma particle is lost by diffusion to the wall, is given by the r.h.s. of
Eq. (4.43). We can interpret � = a/2.405 as the characteristic length for the Bessel
profile Eq. (4.42).

In summary, the plasma in a cylindrical discharge tube has a radial density profile
with a peak in the center, as shown in Fig. 4.14. This can be understood because the
number of ionization processes Sion = neνion is maximum there whereas losses
occur only at the wall. The plasma potential in the center is the integral of the
ambipolar electric field, which points radially outward, and is more positive than the
wall potential. This type of discharge plasma is found, for example, in fluorescent
tubes or in neon display tubes.

Fig. 4.13 The Bessel
functions of first and second
kind, J0(x) and Y0(x). The
Bessel functions are the
“cousins” of cosine and sine
for cylindrical geometries

–

Fig. 4.14 The density profile
in a cylindrical tube attains its
maximum on the axis and
becomes zero at the wall
r = a

4.3.4 Motion in Magnetic Fields in the Presence of Collisions

In Sect. 3.1.4 we have seen that, without collisions, an ion in crossed electric and
magnetic fields performs an E×B drift at right angle to the electric field. In the
following we will see that current flow across the magnetic field requires collisions.
The trajectory of an ion in crossed electric and magnetic fields under the action of
collisions can be discussed thoroughly when we assume that a collision leads to the
total transfer of momentum like in charge-exchange collisions. Then, the trajectory
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Fig. 4.15 Typical ion
trajectories in crossed fields.
The electric field is oriented
in x-direction.
(a) νm,i/ωci < 1
(b) νm,i/ωci ≈ 1. For
increasing collisionality νm,i,
the trajectory from the
E × B-direction to the
E-direction

y

x
B

a

b

is piece-wise given by Eq. (3.11) but the length of the segments follows a statistical
distribution (see Fig. 4.15).

In analogy to the discussion of the mean free path in Eq. (4.14), we discuss here
the situation of a constant mean free time between collisions. This concept is valid,
when the collision cross section approximately decreases as σ ∝ v−1, which makes
the collision frequency (and hence the mean time between collisions) constant.

The probability p(t)dt for an ion to perform a collision after a given time t is
the product of the probability to have no collision for 0 < t ′ < t , which decays
exponentially, and the probability to have a collision between t and t + dt , which is
νm,idt , hence

p(t) = νm,i exp(−νm,it) . (4.44)

The factor νm,i, which is the ion collision frequency for momentum transfer, ensures
that

∫ ∞
0 p(t)dt = 1. We obtain the mean displacement between two collisions by

integrating the trajectory Eq. (3.11) over the probability distribution (4.44)

�x = Exνm,i

ωci Bz

∞∫
0

[1 − cos(ωcit)] exp(−νm,it)dt,

�y = Exνm,i

ωci Bz

∞∫
0

[sin(ωcit) − ωci t] exp(−νm,it)dt . (4.45)

The evaluation of the integrals is straightforward and yields the average particle
velocities
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v̄x = νm,i�x = Ex

Bz

ωci/νm,i

1 + (ωci/νm,i)2 = μi Ex

1 + (ωci/νm,i)2

v̄y = νm,i�y = − Ex

Bz

(ωci/νm,i)
2

1 + (ωci/νm,i)2 (4.46)

Here, μi = e(mνm,i)
−1 is the ion mobility. The resulting velocities v̄x and v̄y are

plotted in Fig. 4.16 as a function of the Hall parameter. ωci/νm,i, which describes
the number of gyro periods between two collisions. The Hall effect in solid matter
was discovered, in 1879, by Edwin Hall (1855–1938). When ωci/νm,i 
 1, the ions
experience only few collisions and the velocity v̄y approaches the E×B velocity
while v̄x → 0. This is the limit of a magnetized plasma. In the opposite limit,
ωci/νm,i 
 1, the ion motion is preferentially in x-direction and approaches the
collisional result v̄x = μi Ex of the unmagnetized plasma.

Instead of particle velocities we can also consider current densities, which lead
to the ion conductivity tensor in a collisional magnetized plasma

⎛
⎝ jx

jy
jz

⎞
⎠ = σi

⎛
⎜⎜⎜⎜⎜⎝

1

1 + (ωci/νm,i)2

ωci/νm,i

1 + (ωci/νm,i)2
0

−ωci/νm,i

1 + (ωci/νm,i)2

1

1 + (ωci/νm,i)2
0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

·
⎛
⎝ Ex

Ey
Ez

⎞
⎠ . (4.47)

Here, σi = ne2/(miνm,i) is the ion conductivity in the unmagnetized plasma. The
current in electric field direction is called the Pedersen current and the cross-field
current the Hall current. The current along the magnetic field is the same as in the
unmagnetized case. Similar expressions can be derived for electrons, in which the
ratio ωce/νm,e determines the direction of the current.

In the ionosphere, the conductivity parallel to the field lines is several orders of
magnitude higher than the Hall and Pedersen conductivities. Therefore, magnetic
field lines connecting the ionosphere with the magnetosphere can be considered
as wires that transport current between these regions. Moreover, magnetic field

Fig. 4.16 Normalized ion
velocities in a crossed field
situation with collisions
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lines become essentially equipotentials because the perpendicular components of
the electric field become larger than the parallel electric fields.

In summary, the ion motion in crossed electric and magnetic fields under the
influence of collisions is the proper model to discuss the transition from unmagne-
tized ions to magnetized ions. The essential parameter is the ion Hall parameter
ωci/νm,i = μi B, which determines the amount of Hall motion. When the Hall
parameter is small, collisions dominate over gyromotion and the ions are unmag-
netized. When it becomes large, the ions are magnetized. The same terminology
applies to the electrons. When both electrons and ions are magnetized, the entire
plasma is called magnetized. The following example shows that a plasma with mag-
netized electrons but unmagnetized ions has interesting new properties.

4.3.5 Application: Cross-Field Motion in a Hall Ion Thruster

Modern ion thrusters for small spacecrafts make use of the plasma Hall effect
described in the previous Section. Such a device (as described in the review [69]
and in references therein) was used for ESA’s Earth-to-Moon mission SMART-1
[70, 71]. The principle of this device is shown in Fig. 4.17. The plasma is created
inside an annular gap that contains a metallic anode through which the propellant
gas (xenon) is introduced. The walls of the plasma gap are insulated with ceramics.
The most important part of this device is the magnetic circuit, consisting of mag-
nets and ferromagnetic discs (hatched areas), which produces a localized transverse
magnetic field near the exit of the plasma channel. A dc discharge is operated by
applying a high voltage between an electron gun and the anode. The electron gun

Fig. 4.17 Hall-effect plasma
thruster. The plasma channel
of the SPT100ML thruster
has 69 and 100 mm inner and
outer diameter, and 25 mm
length. The mean radial
magnetic field is
Br = 160 mT. The discharge
is operated at Ud = 300 V
and Id = 4.2 A, giving a
thrust of 80 mN. (Reprinted
from [69] with permission.
c© 2004, IOP Publishing

Ltd.)
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has a dual purpose: it delivers primary electrons for the discharge process and acts
as neutralizer for the exiting ion beam.

The transverse magnetic field in the discharge gap of Br = 160 mT guaran-
tees that the electron Hall parameter ωce/νm,e becomes very large. Therefore, the
electron motion is preferentially in E×B direction (indicated by the symbols �
and ⊗) and the electrons are practically confined in a ring. These electrons have
a speed ve,ϕ = 2.5 × 106 m s−1, which can be explained by E×B motion when
we assume that the discharge voltage of 300 V drops over a distance of 7.5 mm,
which compares well with the thickness of the magnetized region. The mean elec-
tron speed corresponds to an energy of 17.7 eV, compared to an ionization energy
for xenon of 12.1 eV. The number of ionization processes per volume and second,
Si = nXe〈σionv〉, attains large values under these conditions, leading to 90–95%
ionization of the propellant gas.

The axial motion of electrons, which constitutes part of the discharge current,
is not fully understood yet because the cross-field mobility of the electrons result-
ing from electron-neutral collisions is too low to describe the actual electron cur-
rent. It was conjectured [69] that an anomalous collision frequency results from
microinstabilities, which were the subject of recent investigations [72]. Although
the anomalous collision frequency will reduce the effective electron Hall parameter,
the electron cross-field resistivity will be still high enough that practically the entire
voltage drop of the discharge occurs across the magnetized plasma layer.

The ion motion is nearly unaffected by the magnetic field in the discharge gap.
Here, we do not use the argument that the ion-neutral collision frequency exceeds
the ion cyclotron frequency, which applies to extended plasma regions that are much
larger than the size of the gyroorbit. Rather, we see that a xenon ion in the anodic
part of the plasma gap has essentially wall temperature. As soon as it enters the
magnetized region at the exit of the gap, the ion is accelerated by the high electric
field Ez ≈ 4 × 104 V m−1 and performs a short section of a gyroorbit of radius
rL = E(Bωci)

−1 = 204 m. Since this radius is very much larger than the thickness
of the magnetized region, the ion orbit is practically straight, and the ion gains the
entire potential energy from the potential drop and leaves the thruster with 300 eV
energy. The acceleration to such an exhaust velocity of about 2 × 104 m s−1 across
the magnetized plasma region has been verified by spatially-resolved laser induced
fluorescence measurements on Xe+ ions [73].

A beam of charged particles cannot simply be blown into ambient space, because
it represents a space charge ρ = ji/v, which repels other ions that leave the beam
source at a later time. Such fundamental questions of space-charge limited flow will
be discussed in Sects. 9.2 and 9.4.4. Therefore, the ion space charge is neutralized by
a source of electrons near the exhaust of a thruster. In the Hall thruster, the electron
gun delivers these electrons.

In summary, the Hall ion thruster is an example for a plasma where different Hall
parameters lead, on the one hand, to E×B motion of the electrons for efficient ion-
ization and, on the other hand, to localization of the potential drop in the magnetized
region and subsequent acceleration of ions in the axial electric field.



94 4 Stochastic Processes in a Plasma

4.4 Heat Balance of Plasmas

In this Section, we will discuss the heat balance in different plasma systems. The
simplest example is the heating of electrons in a low-pressure gas discharge, which
gives a first insight, why the electron temperature can be much higher than the tem-
perature of the heavy particles. The other two examples address the conditions to
realize controlled nuclear fusion in magnetic confinement fusion experiments and
in inertial confinement fusion.

4.4.1 Electron Heating in a Gas Discharge

So far we were only interested in the mean motion of the electron (or ion) gas which
resulted in the electric current and the diffusive flux. Now we are looking at the
random motion of electrons, especially at the energy gain and loss processes, and
the resulting electron temperature.

Between two elastic collisions, electrons gain kinetic energy in the electric field
at a rate

dW

dt

∣∣∣∣
gain

= −eEvd = e2

meνm
E2 . (4.48)

From conservation of momentum and energy in an elastic collision between a light
and heavy particle, in which the light particle is deflected by an angle θ , we find
(Problem 4.4) that the energy loss �W of the light particle is given by

�W

W

∣∣∣∣
loss

= 2
me

ma
[1 − cos(θ)] . (4.49)

This energy loss has to be averaged for an isotropic distribution of scattering angles
θ . Because of this isotropy, the proper average is calculated in spherical coordinates

〈
�W

W

〉
= 1

4π

2π∫
0

dϕ

π∫
0

dθ sin θ
2me

ma
(1 − cos θ) = 2me

ma
. (4.50)

The result shows, how small the fractional energy loss is. Therefore, the mean
kinetic energy (i.e., the electron temperature) will rise until the energy loss rate
equals the energy gain Eq. (4.48). While the real energy loss rate is determined by
elastic and inelastic collisions, we contend ourselves here with discussing the more
frequent elastic losses

dW

dt

∣∣∣∣
loss

= n〈�W 〉νm . (4.51)
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In balancing gain and loss rates, we must bear in mind that the electron temperature
is not only contained in 〈W 〉 = (3/2)kBTe but also in the collision frequency νm ≈
vT /λmfp. Using Eqs. (4.48) and (4.51) this leads to the gain-loss balance

〈W 〉ν2
m = e2

me

ma

2me
E2 (4.52)

in which the l.h.s. is proportional to (kBTe)
2. Finally, we obtain an estimate for the

equilibrium electron temperature

kBTe = 3−1/2
(

ma

2me

)1/2

eEλmfp . (4.53)

As we had expected, the electron temperature is proportional to the energy gain
between two collisions, which is proportional to E λmfp, the product of the electric
field and the mean free path. However, the proportionality factor is not the atom-
electron mass ratio, as one could have conjectured from Eq. (4.49), but only the
square root of that expression. Besides increasing the temperature, we had also to
account for the decrease of gain rate and increase of loss rate with the square root of
temperature. The proportionality Te ∝ Eλmfp is known in gas discharge physics as
the fundamental law, Te = f (E/p), where the gas pressure p represents the atom
density.

In summary, the electron temperature is not simply given by the energy gain
E λmfp between two collisions. Rather, the collision is mainly responsible for chang-
ing the direction of the momentum vector and only a small fraction ∝ me/ma of
the energy is lost in this collision. So, in a sequence of free flights between two
collisions, the kinetic energy of the electron gets higher and higher. A steady state
is reached when the rate of energy loss equals the energy gain as described by
Eq. (4.53). This shows that the electron temperature is high because the cooling
mechanism is inefficient.

An everyday experience for a flow equilibrium that is governed by a loss rate,
which depends on the reached level of a quantity, is shown in Fig. 4.18. When a
bath tub is filled with a constant water current Iin, the water level h is determined
by Bernoulli’s law that gives the speed of outflow as v = (2gh)1/2 and the water

Fig. 4.18 The bath tub
analogy for a flow
equilibrium that is
determined by the loss rate
(see text)

Iin

Iout

h
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outflow current through an opening of cross-section A becomes Iout = Av. Hence,
h = I 2

in/(2g A2). The water level rises to the filling height h until the outflow rate
reaches the inflow rate. By the same principle, the electron temperature rises until
the gain-loss equilibrium is reached.

4.4.2 Ignition of a Fusion Reaction: The Lawson Criterion

The establishment of a steady-state nuclear fusion reaction requires that there is
more energy produced per unit time by fusion reactions than is lost by radiation
processes, and by the loss of energetic particles to the walls. Otherwise, the plasma
temperature would decrease and the fusion reaction would extinguish. In a hot
plasma of T > 10 keV, all deuterium and tritium atoms will be fully ionized. The
main source of radiation in a dilute plasma, as used in magnetic fusion experiments,
is Bremsstrahlung that arises from Coulomb collisions of electrons with ions.

4.4.2.1 Bremsstrahlung

Bremsstrahlung is well known from X-ray tubes, where electrons of (20–100) keV
energy hit a solid target (e.g., a copper or tungsten anode). These energetic electrons
can penetrate deep into the electron shells of the atom and are deflected by the strong
electric field of the atomic nucleus. The deflection is an accelerated motion, which
leads to radiation of the electrons. The non-relativistic expression for the radiated
energy per unit time at an acceleration a is [74]

dW

dt
= e2

6πε0c3
a2 . (4.54)

In the case of a hot plasma, the acceleration is given by the Coulomb force of the
ion of charge number Z at an impact parameter b (see Fig. 4.19). The characteristic
value for the acceleration is then given by

a ≈ Ze2

4πε0b2me
. (4.55)

The interaction time is roughly �t = 2b/v, which gives an estimate of the radiated
energy

�W = �t
dW

dt
= 4

3

Z2e6

(4πε0)3m2
ec3b3v

. (4.56)

The number of scattering events per second for a single ion is given by the product
of the electron flux nev and the area of the ring 2πbdb. When we multiply this
frequency by the ion density ni, we obtain the event rate per volume and second.
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Fig. 4.19 Scattering geometry for an electron-ion collision. The trajectory is approximated by
straight lines and two curved segments of length b. The impact parameter b defines a ring of area
2πbdb for deflection by an angle χ

Multiplying again by the radiated energy �W of a single event, we obtain the
energy loss rate per volume from collisions with an impact parameter between b and
b + db,

dPbr = 8π

3

Z2e6neni

(4πε0)3m2
ec3

db

b2
. (4.57)

To obtain the total radiation power by Bremsstrahlung per unit volume, we have to
integrate this expression over all meaningful impact parameters. Obviously, there is
a singularity at b = 0. However, at the smallest scales, the electron can no longer
be treated as a point charge. At atomic scales, the electron shows its wave character,
which is described by the de Broglie wavelength

λB = h

mev
≈ h

(3kBTeme)1/2 . (4.58)

In the last step we have used 1
2 mev

2 = 3
2 kBTe to estimate the electron speed. Inte-

grating Eq. (4.57) from bmin = λB to infinity, we obtain

Pbr = 8π2

√
3

(kBTe)
1/2

(4πε0)3m3/2
e c3h

neni Z
2 . (4.59)

This approximate result gives the correct dependence on the physical quantities. A
precise treatment, assuming a Maxwellian distribution of the electrons and quantum
mechanical corrections, yields an increase by a factor of the order 2 [75].

In an ideal fusion plasma, there will be only deuterium and tritium ions from
the filling gas and α-particles or 3He nuclei from the fusion reaction, which lead
to electron scattering. Impurity ions with a high Z -number, however, can dramati-
cally increase the energy losses by Bremsstrahlung because of the Z2 dependence
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in Eq. (4.59). This is the reason why all parts of the fusion device, which may get
into contact with the plasma, are made of low-Z material, e.g., graphite.

4.4.2.2 Nuclear Reaction Rate

Let us assume, for simplicity, that the plasma is made of 50% deuterium and 50%
tritium ions. The reaction rate between the two ion species is given by

SDT = nDnT〈σDTv〉 = nDnT

∫
F ′

M(W )σDT(W ) dW . (4.60)

The expression is similar to the ionization rate Eq. (4.18), but we have to bear in
mind that this calculation requires the proper relative velocity of reaction partners,
which have similar mass. F ′

M(W ) is the energy distribution function Eq. (4.9), but
normalized to unity. This can be done by using the reduced mass of the deuterium–
tritium system in the Maxwell distribution. The reaction rates in Fig. 4.20 are cal-
culated in this way [38]. The power from this reaction is PDT = SDT QDT. Here,
QDT = 17.6 MeV is the sum of the energies in the α-particle and in the neutron.

The D–T reaction attains appreciable values for ion temperatures of the order of
10 keV. Although the maximum of the D–T fusion cross-section (Fig. 1.10) is only
reached at ≈ 70 keV, the plasma temperature can be considerably below this value.
We had observed a similar tendency for the electron temperature and ionization
threshold in Sect. 4.2.3.

Fig. 4.20 Rate of fusion
processes as a function of ion
temperature (from [38])

–

–

–

–

–

–

–
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4.4.2.3 Lawson’s Energy Balance

The thermal energy content (per unit volume) of a hot isothermal (Te = TD = TT =:
T ) and quasineutral (ne = nD + nT) D–T fusion plasma is

Wth = 3

2
kB (neTe + nDTD + nTTT) = 3nekBT . (4.61)

The heat loss per unit volume and per second can be expressed in terms of an energy
confinement time τE

PH = Wth

τE
. (4.62)

The conditions for maintaining the plasma temperature were first analyzed by John
D. Lawson (1923–2008) [76], who assumed that the total power leaving the plasma,
Pbr + PH + PDT, can be first converted to electricity and then to heating power (e.g.,
using radio waves) with an overall efficiency η, which then replenishes the heat loss
and Bremsstrahlung loss. This gives the balance

Pbr + PH = η(Pbr + PH + PDT) . (4.63)

Inserting the functional dependence of the various terms on the temperature and
using nD = nT = ne/2, we obtain

Abrn
2
e(kBT )1/2 + 3nekBT

τE
= η

1 − η

1

4
n2

e〈σv〉QDT (4.64)

neτE = 3kBT
η/4
1−η

〈σv〉QDT − Abr(kBT )1/2
. (4.65)

Because 〈σv〉 is only a function of temperature, we can plot a diagram neτE = f (T )

(cf. Fig. 4.20). For this purpose, we use the coefficient for Bremsstrahlung Abr =
5.35 × 10−37Wm−3 which is valid for Z = 1 and when kBT is given in keV [75].
The fusion reactivity 〈σv〉 is taken from [38].

The curves in Fig. 4.21 can be interpreted as follows: Assuming an efficiency
η = 0.3, a minimum value of the product neτE = 7×1019 m−3 s−1 must be reached.
At the same time, the plasma temperature must be ≈ 25 keV. These two conditions
are known as the Lawson criterion for steady state operation. A higher efficiency
leads to a lower value of neτE.

4.4.2.4 Ignition

So far we have assumed that the α-particles are escaping from the plasma and
are part of the heat loss PH. When the α-particles, which have an energy of
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Fig. 4.21 Lawson’s criterion
for steady state operation at
η = 0.5 and η = 0.3. The
ignition curve corresponds to
η = 0.154

–

Qα = 3.52 MeV, can be confined, this energy can be used to compensate for the
heat losses, which defines the ignition condition

Pbr + PH = Pα = 1

4
n2

e〈σv〉Qα . (4.66)

One can easily show that this condition is equivalent to Lawson’s condition (4.63)
for η = 0.154. The corresponding ignition curve is also shown in Fig. 4.20. Ignition
requires neτE > 1.5 × 1020 m−3 s.

4.4.2.5 The Fusion Triple Product

The definition of the Lawson parameter neτE may lead to the conjecture that the
fusion yield could be increased by feeding more neutral gas into the reactor. While
the electron density would generally rise in such an attempt, the plasma temperature
would decay. The reason for this behavior lies in the fact that the plasma pressure
p = 2nekBT determines the plasma losses. Therefore, a fusion plasma is operated
at a constant pressure. A useful figure of merit for a magnetic fusion experiment is
the so-called triple product neτET , which can also be identified as the product of
plasma pressure and energy confinement time. The evolution of this figure of merit
is shown in Fig. 4.22 [77]. Today’s most advanced magnetic fusion experiments,
e.g., the Japanese tokamak JT-60U, have reached their optimum performance. The
next step can only be achieved in a bigger machine like ITER.

A different way to look at the triple product comes from the observation that
in the interesting regime the fusion reactivity scales approximately as 〈σv〉 ∝ T 2.
Then the ratio of fusion power and heat loss becomes
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Fig. 4.22 The evolution of
the fusion triple product
towards the reactor regime.
The design goal for the
ITER-experiment is given as
dashed line. A fusion reactor
will have
neτET ≈ 1022 m−3 s keV
(Reprinted with permission
from [77]. c© 2005, European
Physical Society)

–

–

–

–

Pfus

PH
∝ n2

e T 2

neT/τE
= neT τE . (4.67)

Long energy confinement times became possible by operating the plasma in the
so-called high-confinement mode (H-mode) [43]. A description of H-mode physics
is beyond the scope of this introduction. The interested reader can find more on this
subject in [45].

4.4.3 Inertial Confinement Fusion

The ideas behind the Lawson criterion can be applied to two different scenarios.
In magnetic confinement fusion, the plasma density is low (≈1020 m−3) and the
energy confinement time is long (τE ≈ 1 s). Inertial confinement fusion (ICF) uses
the opposite concept with a high plasma density and a short confinement time. The
idea is to burn a great part of the D-T content of a small pellet before the plasma
has significantly expanded. Modern ICF concepts have been described in reviews
[51, 78] and in a tutorial [79].

4.4.3.1 Inertial Confinement Time

The confinement time for a homogeneous sphere of hot plasma can be estimated as
follows: Let us assume that the high-pressure plasma of radius R is surrounded by
a vacuum. Then a rarefaction wave will propagate at the sound speed cs from the
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vacuum boundary into the plasma, communicating that there is a vacuum out there
to which it is free to expand. This rarefaction wave reaches a radial position r after
a time τ(r) = (R − r)/cs, and upon arrival this part of the plasma is no longer
confined. The global confinement time for this system is then the mass-average of
these local confinement times

τc = 1

M

R∫
0

R − r

cs
4πρr2 dr = 1

4

R

cs
. (4.68)

Here, M = (4π/3)ρR3 is the total mass. This result seems plausible because in
a sphere of uniform density half of the mass is found in the outer 20% of radius.
Therefore, τc is substantially smaller than a naïve estimate R/cs.

4.4.3.2 Spherical Implosion

When intense laser radiation with a power density of 1014–1015 W m−2 impinges
on a spherical target, the energy is absorbed on the surface to generate a plasma
of (2–3) keV temperature and a few hundred megabars pressure. Currently dis-
cussed fusion targets have a design as shown in Fig. 4.23. The outermost layer
(ablator) is made of plastic foam or a low-Z material like beryllium. On the
inside, a layer of D–T ice is deposited with about 80 μm thickness. The volume
is filled with D–T gas with a mass density of 0.3 mg cm−3, corresponding to 30 bar
pressure at room temperature. The intention is to heat and compress the central
gas filling to fusion temperature of about 5 keV while the surrounding main fuel
stays dense and relatively cold. This concept assumes self-ignition in the central
hot spot.

The pressure from the ablated surface material accelerates the outer shell of the
target towards the center. The acceleration mechanism is the same as for rocket

Fig. 4.23 NIF pellet design. A plastic microsphere with the main fuel as a hollow shell of D–T ice.
The volume is filled with D–T gas at 30 bar normal pressure to form a hot spot. (Reprinted with
permission from [52]. c© 2004, American Institute of Physics)
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propulsion. When the accelerated fuel collides in the center, compression and heat-
ing occurs. In inertial-confinement fusion experiments, the radius of the compressed
fuel is about 1/30 of the original pellet radius. The achievable final velocity of the
imploding shell of solid D–T can be estimated from the rocket equation

vshell = vexhaust ln

(
mablator

mDT

)
. (4.69)

Typical implosion velocities vary from (2–4)×105 m s−1 [51].

4.4.3.3 Ignition

In ICF, ignition occurs when the α-particles from the D–T fusion can deposit their
energy inside the hot spot more rapidly than the heat content is lost by plasma expan-
sion. Assuming that the density of the hot spot is high enough to stop all α-particles
by collisions, we can use the Lawson condition for ignition, neτE > 1.5×1020 m−3 s
and insert the confinement time τc from (4.68) to obtain

ne Rhs = (1.5 × 1020 m−3 s) × 4cs . (4.70)

This is a condition for the product of plasma density and radius to achieve ignition.
Introducing the mass density ρm = (5/2)nemp, mp being the proton mass, this
defines a critical value for the product (ρm R)crit ≈ 0.4 g cm−2, which is sufficient
to stop the α-particles [78]. Unfortunately, the ignition condition is not yet sufficient
for an optimum use of the D–T fuel.

4.4.3.4 Burn Fraction

For an efficient fusion process, a considerable fraction (usually 1/3) of the main
fuel must be burned during the confinement time. The rate, at which tritium (and
deuterium) react in a 50% D/50% T fuel is

dnT

dt
= dnD

dt
= −nDnT〈σv〉DT . (4.71)

Inserting the total fuel density n = 2nT = 2nD, the burn process obeys

dn

dt
= −1

2
n2〈σv〉DT , (4.72)

which can be easily integrated from t = 0 to τc with the result
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1

n
− 1

n0
= τc

2
〈σv〉DT , (4.73)

where n0 is the initial density of the compressed fuel. We define the burn fraction
fb = 1− (n/n0) and introduce the initial mass density ρm0 = (5/2)n0mp, mp being
the proton mass. After simple algebraic manipulations we obtain

fb = ρm0 R

ρm0 R + g(T )
, (4.74)

with g(T ) = 20mpcs/〈σv〉DT . g(T ) takes a minimum of 6 g cm−2 at 30 keV. To
achieve a burn fraction of 1/3, we need ρm0 R ≈ 3 g cm−2, which is an order of
magnitude higher than the mass per area for ignition.

In retrospect, we can ask why we need a highly compressed target for ICF. The
functional dependence on the mass per area, ρm R, might suggest to work with solid
D–T at a density of ρm = 0.21 g cm−3 and a corresponding larger radius of R ≈
14.3 cm. The need for compression becomes clear, when we consider the total mass
in a sphere of radius R that fulfills the constraint ρR ≈ 3 g cm−2

Ms = 4

3
πρm R3 = 4

3
π

(ρm R)3

ρ2
m

. (4.75)

This shows that the mass of D–T fuel shrinks as ρ−2
m . The energy yield of the DT–

fuel is εDT = 17.6 MeV/(5mp) = 3.4 × 1011 J/g. The mentioned R = 14 cm
ball of D–T ice represents about 2.5 kg fusionable material with an explosive yield
of about 70 kilotons TNT [79]. Compressing the radius by a factor of 10 would
increase the density by a factor of 1000 and reduce the fuel content by 10−6 to
2.5 mg—equivalent to 70 kg TNT, or ≈ 300 MJ—which can be handled in a fusion
reactor. For a power plant design, about 5 shots per second can be envisaged with
a total thermal power of ≈ 1.5 GW. The NIF capsule shown in Fig. 4.23 contains
only about 1 mg D–T in view of the power handling capacity of the NIF target
chamber.

4.4.3.5 Lawson Criterion for ICF

We have seen above that the balance equations of ICF are based on characteristic
ρm R values rather than on the neτE criterion of magnetic fusion devices. In the spirit
of (4.70), we can rewrite the characteristic ρm R = 3 g cm−2 for a burn fraction of
1/3 in terms of number density and confinement time nτc = 2 × 1021 m−3 s [79].
Thus the Lawson criterion for ICF is typically a factor of 20 higher than that of
magnetic fusion due to the inefficiencies in assembling the fuel that ICF has to
overcome.
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The Basics in a Nutshell

• The various definitions of a Maxwell distribution are

1-dimensional f (1)
M (vx ) = n

(
m

2πkBT

)1/2
exp

(
− mv2

x
2kBT

)

3-dimensional f (3)
M (v) = n

(
m

2πkBT

)3/2
exp

(
−m(v2

x+v2
y+v2

z )

2kBT

)

distribution of speed fM(v) = 4πv2n
(

m
2πkBT

)3/2
exp

(
− mv2

2kBT

)

distribution of energy FM(W ) = n 2√
π

1
(kBT )3/2 W 1/2 exp

(
− W

kBT

)
• The various definitions of “thermal velocity” are:

mean thermal velocity vth =
(

8kBT
πm

)1/2

most probable velocity vT =
(

2kBT
m

)1/2

• The mean free path is λmfp = (nσ)−1 and the collision frequency νc =
v/λmfp.

• The number of collision events in a hot gas per volume and second is given
by the rate coefficient 〈σv〉, in which the angle brackets denote averaging
over the distribution function.

• The Coulomb collision frequency decreases for rising temperature as νei ∝
T −3/2 and is independent of plasma density.

• Transport of plasma particles is accomplished by electric fields or density
gradients. The individual transport coefficients are the mobilities μe,i =
e/(me,iνe,i) and the diffusion coefficients De,i = μe,ikBTe,i/e.

• The global transport coefficients are the electrical conductivity σ =
ne(μe + μi) and the ambipolar diffusion coefficient Da = (Diμe +
Deμi)/(μe + μi).

• In the presence of a magnetic field, the transport coefficients become ten-
sors that link the velocity to the force. This applies to mobility, conductivity
and diffusivity. The Pedersen conductivity is the diagonal element and the
Hall conductivity the off-diagonal element of the conductivity tensor.

Problems

4.1 Show that the maximum of the Maxwell distribution function fM(|v|) is found
at vT .

4.2 Prove that the mean thermal velocity in Eq. (4.7) is vth = [(8kBT )/(πm)]1/2.
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4.3 Prove that the mean kinetic energy in Eq. (4.8) is (m/2)〈v2〉 = (3/2)kBT .

4.4 Derive (4.49) from conservation of energy and momentum by considering the
scattering of a light particle on a heavy particle. Hint: In this limit the modulus
of momentum of the scattered electron is the same as the momentum before the
collision.

4.5 Solve the integral in Eq. (4.50).

4.6 Solve the integrals in Eq. (4.45) and derive (4.46).

4.7 Show that the velocities in Eq. (4.46) can also be derived from the force balance
between friction and total Lorentz force

miνmv = e(E + v × B) .

4.8 Assume that the radial electron density profile in a long cylindrical discharge
tube of radius a is parabolic

ne(r) = n(0)

[
1 − r2

a2

]
.

Determine the equivalent electron density of a homogeneous density distribution
that would give the same current.

4.9 Perform the intermediate steps for proving the statement that the ignition line
for fusion is equivalent to η = 0.154 in the Lawson curves.



Chapter 5
Fluid Models

“The time has come,” the Walrus said,
“To talk of many things:
Of shoes—and ships—and sealing wax—
Of cabbages—and kings—
And why the sea is boiling hot—
And whether pigs have wings.”

Lewis Carroll, Through the Looking-Glass

In the single-particle model (Chap. 3) the motion of the particles was derived from
fixed external electric and magnetic fields. This approach is very useful to obtain a
first insight into the richness of plasma motion, which results in a host of particle
drifts. The major drawback of this model is the neglect of the modification of the
fields by the electric currents represented by these drifts. The present chapter on
fluid models attempts to overcome this weakness.

The self-consistency of a plasma model is an important aspect. Only in such
models (Fig. 5.1) phenomena can be described where a magnetic field is apparently
frozen in the highly conductive plasma, such as in solar prominences. The Swedish
physicist and Nobel prize winner Hannes Alfvén (1908–1995) had recognized this
cooperative action of plasma and magnetic field and had predicted that a new type
of magnetohydrodynamic waves should exist, which are now named Alfvén waves.

Fig. 5.1 (a) A plasma model
with prescribed forces. (b) A
self-consistent plasma model
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5.1 The Two-Fluid Model

The huge number of particles makes it impossible to solve Newton’s equation for
each of these particles. Therefore, we will seek a description similar to hydrody-
namics, in which the motion of fluid elements is studied instead of tracing the indi-
vidual molecules. In particular, to make the plasma model realistic, a self-consistent
description for the plasma motion and the electromagnetic fields will be used.

5.1.1 Maxwell’s Equations

The starting point for the fluid model is a proper combination of Maxwell’s equa-
tions with the particle currents and space charges. Maxwell’s equations are given in
a form that uses the electric field E and the magnetic field B. For B, we will use the
names magnetic induction, magnetic field and magnetic flux density synonymously.
Because they appear in the equation of motion (3.1), E and B are the natural field
quantities.

∇ · E = ρ

ε0
(5.1)

∇ × E = −∂B
∂t

(5.2)

∇ · B = 0 (5.3)

∇ × B = μ0

(
j + ε0

∂E
∂t

)
. (5.4)

Here, ρ is the total charge density and j the current density carried by particles.
These two quantities contain the action of the plasma motion on the fields. Let us
shortly recall the physical contents of the set of Maxwell’s equations:

• The relationship (5.1) is Poisson’s equation, which links the electric field to the
space charge. This will be our workhorse for electrostatic problems in plasmas.
Often, we will also use the electric potential Φ, which is linked to the electric
field by E = −∇Φ.

• Equation (5.2) is Faraday’s induction law in differential form. When we integrate
the electric field along a loop of area A that encircles a magnetic flux Φm =∮

A B · dA, we obtain the integral form of the induction law, Uind = −dΦm/dt ,
which states that the voltage induced in the loop is the (negative) change of the
magnetic flux through this loop. Remember that the induced voltage can depend
on three factors: the change in magnetic flux density B, the change of area |A| and
a changing angle between magnetic field direction and the area normal, which is
contained in the dot product B · dA.

• The vanishing of the divergence of the magnetic flux density B in (5.3) is an
experimental fact that there are no magnetic monopoles in ordinary matter.

• Ampere’s law (5.4) states that the curl of the magnetic flux density B is deter-
mined by the conduction current j and the displacement current ε0∂E/∂t . For
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calculating the stationary magnetic field of a straight wire, we will use the integral
form of Ampere’s law,

∮
B · ds = μ0 I .

At this point, we need to discuss why we do not use the magnetic field strength H,
or the dielectric displacement D. The single particle model had the important result
that a gyrating particle has a magnetic moment, which is antiparallel to the direc-
tion of B. Therefore, a plasma is a diamagnetic medium. Moreover, the magnetic
moment is either a conserved quantity, when we try to change the magnetic flux
density, or it scales as ∝ 1/B, when we prescribe the particle energy. Therefore,
we cannot expect any proportionality B = μrμ0H that is typical of ferromagnetic
materials. Therefore, introducing H would not help simplifying our models.

We had also seen in Sect. 3.5.2 that electric polarization of a plasma does only
appear in time-varying fields. Any static polarization charges can only exist at the
plasma surface, but the resulting electric field will be shielded in the plasma interior.
Hence, D is also no suitable quantity to describe static situations.

On the other hand, we will explicitly use the concept of a plasma as a dielectric
medium in connection with plasma waves. When we take the simplified picture for
electron waves in a low-temperature plasma, where an ion is essentially at rest and
the electron reacts to the oscillating electric field, we can group the plasma particles
into pairs of electrons and ions that form local oscillating dipoles.

5.1.2 The Concept of a Fluid Description

There is one essential difference between hydrodynamics and plasma fluid models.
In hydrodynamics, the molecules of the liquid are strongly coupled. This means that
the molecules are continuously colliding with their neighbors. A pair of particles
will only slowly drift apart by diffusion. Hence, it is meaningful to partition the
liquid into macroscopic fluid elements, which contain many molecules that stay
close together for a long time. These fluid elements move along streamlines of the
flow pattern.

In an ideal plasma, however, the electrons and ions do not experience their nearest
neighbors. This means that Coulomb collisions are rare. Rather, the electrons and
ions follow the forces from the average electric and magnetic fields that are produced
by many other particles. Therefore, we can partition the plasma into small cells but
this does not imply that the particles will stay inside their cells for an extended
time. The electrons and ions will typically leave a cell of size � after a transit time
Tt ≈ �/vth while particles from neighboring cells enter this volume. Therefore, we
can use these cells as a kind of bank account to keep a gain and loss record of the
total number of particles in such a cell, or the total momentum, or the heat content.
We will see that this approach gives us a kind of hydrodynamic description, but the
analogy to real liquids has its limitations.

Depending on the situation, we can arbitrarily choose a description with cells
that are fixed in a resting frame of reference, or we can transform to a moving frame
of reference that follows the mean flow velocity of the plasma.
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Fig. 5.2 Shifted Maxwellian
with a mean drift velocity u.
Thee group of particles in the
interval [vx , vx + �vx ]
contains �n(vx ) particles

In the following, electrons and ions are assumed to form two independent fluids
that penetrate each other (two-fluid model). The defining properties of a plasma for
the fluid description are the densities ne and ni of electrons and ions, the tempera-
tures Te and Ti, as well as the streaming velocities ue and ui.

A streaming electron population can be described by a shifted distribution func-
tion (Fig. 5.2), which for simplicity is assumed to be Maxwellian. However, the
arguments given below apply to arbitrary distributions. In one dimension, the shifted
Maxwellian has the form

fM(vx ) = n

(
m

2πkBT

)1/2

exp

(
−m(vx − ux )

2

2kBT

)
, (5.5)

with a mean drift velocity u = (ux , 0, 0) that defines the x-direction.

5.1.3 The Continuity Equation

The balance for the number of particles in a fixed cell of size �V = �x�y�z is
discussed for the one-dimensional flow described by (5.5). The number of particles
inside the interval [x, x +�x] is N = n A�x with A = �y�z. The incident particle
flux is IN = n Aux . When this flux is decelerated or accelerated inside the cell by
external forces, the flux on the exit side is larger or smaller.

Accordingly, the number of particles in the cell is diminished or increased
(Fig. 5.3)

− ∂N

∂t
= IN (x + �x) − IN (x) ≈ ∂ IN

∂x
�x . (5.6)

Fig. 5.3 Definitions used to
derive the continuity equation

N

x
x

x+Δx

IN(x+Δx)IN(x)
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In the last step, we have Taylor-expanded the particle flux and retained only
the differential change of the flux. Dividing by �V = A�x and taking the limit
�V → 0 gives

∂n

∂t
+ ∂(n ux )

∂x
= 0 . (5.7)

This result can easily be generalized to a three-dimensional flow pattern, which
results in the continuity equation

∂n

∂t
+ ∇ · (nu) = 0 . (5.8)

This balance equation describes the conservation of the number of particles in the
flow. When particles are generated or annihilated inside the cell, say by ionization
or recombination, the zero on the right hand side is replaced by a net production rate
S (see Sect. 4.2.3).

The continuity equation can be easily generalized to an equation for the conser-
vation of charge by introducing the charge density ρ = ∑

α nαqα and the current
density j = ∑

α nαqαuα

∂ρ

∂t
+ ∇ · j = 0 . (5.9)

5.1.4 Momentum Transport

The net force in the balance of the considered cell is a result of the sum of all forces
acting on the particles within the cell plus the export and import of momentum
by particles that leave and enter the cell. The starting point of our calculation is
Newton’s equation for the force acting on a single particle

m
dv
dt

= q(E + v × B) . (5.10)

Here, d/dt is the derivative calculated at the position of the point-like particle.
The correct momentum balance for a many-particle system can be obtained by mul-
tiplying (5.10) with the density n. However, in an inhomogeneous flow, the time
derivative has to be calculated according to the rules of hydrodynamic flow

du
dt

= ∂u
∂t

+ ∂u
∂x

dx

dt
+ ∂u

∂y

dy

dt
+ ∂u

∂z

dz

dt
. (5.11)

The vector (dx/dt, dy/dt, dz/dt) is just the velocity u of the cell. This leads to
the compact notation

du
dt

= ∂u
∂t

+ (u · ∇)u , (5.12)
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in which u · ∇ represents the convective derivative, which describes the change of a
quantity originating from the motion of the flow. To gain an insight into this quantity,
consider a man in a boat that is driven by the flow of a river from a narrow region
with rapid flow speed to a wide reach of slow speed. Although the flow pattern is
continuous, and does not change in time, the experience of a subject following the
flow is a change in velocity. Hence, the correct balance of the internal forces for a
fluid element is

nm

[
∂u
∂t

+ (u · ∇)u
]

= nq(E + u × B) . (5.13)

We now need to sum up the surface forces that arise from particles entering and
leaving the fluid cell. For this purpose we consider the particle exchange through
the cell surface sketched in Fig. 5.4.

The calculation is presented for the x-direction only. The cell boundaries are at
x0 and x0 + �x . Further, we select a group of velocities between vx and vx + �vx .
The particle flux represented by this group of velocities is

�IN (vx ) = �n(vx )vx�y�z . (5.14)

The number density �n(vx ) of this particle group is related to the distribution
function f (v) by

�n(vx ) = �vx

∫∫
f (vx , vy, vz)dvydvz , (5.15)

In analogy to the definition of particle flux, we introduce the momentum flux that
is carried by the group of particles around vx

�IP = (mvx )�n(vx )|vx |�y�z . (5.16)

The momentum flux is the momentum transported through a boundary per unit time.
The factor |vx | is a measure for the rate at which the particles pass through the

Fig. 5.4 Calculation of
pressure forces

X0
x

I p(x0+Δx)

I p(x0+Δx)
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+
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boundary, and therefore a positive quantity. The gain and loss balance for the interval
[x0, x0 + �x] can hence be written as

Gain at x0 : I +
P (x0) =

∑
vx>0

[
�n(vx )(mvx )|vx |

]
x0
�y�z (5.17)

Loss at x0 : I −
P (x0) =

∑
vx<0

[
�n(vx )(mvx )|vx |

]
x0
�y�z (5.18)

Gain at x0 + �x0 : I −
P (x0 + �x) =

∑
vx<0

[
�n(vx )(mvx )|vx |

]
x0+�x

�y�z (5.19)

Loss at x0 + �x0 : I +
P (x0 + �x) =

∑
vx>0

[
�n(vx )(mvx )|vx |

]
x0+�x

�y�z . (5.20)

The upper index ± describes the sign of the velocity. Gain and loss by particles
moving to the left represent negative values. The net gain of momentum per unit
time then becomes

∂Px

∂t
= I +

P (x0) − I +
P (x0 + �x) + I −

P (x0 + �x) − I −
P (x0) . (5.21)

By Taylor expanding the momentum flux and replacing negative velocities by
|vx | = −vx , we can combine the result as

∂Px

∂t
= −m

∞∑
vx =−∞

([
�n(vx )v

2
x

]
x0+�x − [�n(vx )v

2
x ]x0

)
(5.22)

= −m
∂

∂x

(
n〈v2

x 〉
)
�x�y�z (5.23)

and n〈v2
x 〉 = ∫

f (vx )v
2
x dvx . The next step is to split the particle velocities into a

mean flow ux and a random thermal motion ṽx

vx = ux + ṽx . (5.24)

Then, we obtain the momentum balance as

∂

∂t
(nmux ) = −m

∂

∂x

[
n
(
〈u2

x 〉 + 2ux 〈ṽx 〉 + 〈ṽ2
x 〉
) ]

. (5.25)

For a one-dimensional Maxwellian we know that (1/2)m〈ṽ2
x 〉 = (1/2) kBT . By

definition, the average of the random motion is 〈ṽx 〉 = 0. Hence, the momentum
balance becomes

∂

∂t
(nmux ) = − ∂

∂x

[
nmu2

x + nkBT
]
. (5.26)
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This is the correct balance for a fixed volume in space. On the r.h.s. of (5.26) we
find the stagnation pressure nmu2

x and the kinetic pressure p = nkBT . Evaluating
the derivatives on both sides and using the continuity Eq. (5.8) we obtain

nm

(
∂ux

∂t
+ ux

∂ux

∂x

)
= −∂p

∂x
. (5.27)

In this representation, the fluid element is considered to follow the flow, which can
be identified by the convective derivative on the l.h.s. of the equation. Generalizing
this one-dimensional result to three dimensions, and adding the volume forces, the
final result gives the momentum transport equation

nm

(
∂u
∂t

+ (u · ∇)u
)

= nq(E + u × B) − ∇ p . (5.28)

5.1.5 Shear Flows

In the previous paragraph, we have calculated the momentum exchange between
neighboring cells along the mean flow. This could be summed up into a new net
volume force, the pressure gradient. Now, we focus our attention on the momen-
tum exchange across the flow (Fig. 5.5). Because of their random thermal motion,
particles passing the boundaries at y and y + �y belong to populations that have
different mean flow velocities.

The calculation is quite similar to that of the previous paragraph, but now we
define a shear stress tensor Pi j

Pi j = nm〈ṽi ṽ j 〉 , (5.29)

which involves the random thermal velocities that are responsible for the momentum
exchange between neighboring cells. Pi j replaces the scalar pressure. Instead of the
pressure gradient we now have the divergence of the shear stress tensor. Shear flows
are associated with viscosity, which, however, is negligible in many plasmas.

Fig. 5.5 Momentum
transport in a shear flow. The
black horizontal arrows mark
the mean local velocity in the
flow. The shaded arrows
indicate the momentum
exchange by particles
traversing the boundary at y
and y + �y

x

y
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Summary of the Two-Fluid Model

The two-fluid model of a plasma includes two individual momentum transport
equations for electrons and ions

neme

[
∂ue

∂t
+ (ue · ∇)ue

]
= −nee (E + ue × B) − ∇ pe

nimi

[
∂ui

∂t
+ (ui · ∇)ui

]
= +nie (E + ui × B) − ∇ pi . (5.30)

The connection with space charge ρ and current density j is established by

ρ = nie − nee

j = nie ui − nee ue . (5.31)

Both fluids obey individual equations of continuity

∂ne

∂t
+ ∇ · (neue) = 0

∂ni

∂t
+ ∇ · (niui) = 0 . (5.32)

Together with Maxwell’s equations,

∇ · E = ρ

ε0
(5.33)

∇ × E = −∂B
∂t

(5.34)

∇ · B = 0 (5.35)

∇ × B = μ0

(
j + ε0

∂E
∂t

)
. (5.36)

we now have a complete self-consistent fluid model of the plasma.

5.2 Magnetohydrostatics

As a first application of the two-fluid model we will inspect slowly evolving plasma
situations, in which the non-linear term u · ∇u can be neglected. Then, the momen-
tum transport for electrons and ions including gravitational forces and friction
between the electron and ion fluid is given by
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nmi
∂ui

∂t
= ne(E + ui × B) − ∇ pi + nmig + nνeime(ue − ui)

nme
∂ue

∂t
= −ne(E + ue × B) − ∇ pe + nmeg + nνeime(ui − ue) . (5.37)

The momentum exchange between the electron and ion fluid is described by a colli-
sion frequency νei and the mean exchanged momentum per volume, nme(ue − ui).

Instead of solving the pair of fluid equations, it is useful to transform these equa-
tions into a set of new variables that describe the mean mass motion vm and the
relative motion ∝ j of the two fluids. This approach is similar to splitting a two-
particle problem into center-of-mass motion and relative motion. The mean mass
motion is described by

ρm
∂vm

∂t
= j × B − ∇ p + ρmg (5.38)

with the mass density ρm = n(mi + me), total pressure p = pe + pi and the mean
mass velocity

vm = (miui + meue)

me + mi
. (5.39)

Note that now the Lorentz force j×B acts on the total current density. Moreover, the
mass motion is not affected by the friction between electron and ion fluid because
it does not change the total momentum, but leads only to redistribution between
electron and ion fluid.

When ∂vm/∂t = 0, (5.38) defines the static equilibria of a magnetized plasma,
which are defined by the force balance

0 = j × B − ∇ p + ρmg . (5.40)

This framework is called magnetohydrostatics. In the next two paragraphs we will
discuss two simple applications of this concept.

5.2.1 Isobaric Surfaces

Let us shortly return to the problem of toroidal confinement. Neglecting gravita-
tional forces as small compared to the magnetic forces, we define the magnetohy-
drostatic equilibrium by

j × B = ∇ p . (5.41)

By taking the dot product with B on the both sides of the equation, the dot product
vanishes yielding 0 = B · ∇ p, i.e., B and ∇ p are perpendicular to each other.
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Fig. 5.6 Nested magnetic
surfaces in a tokamak. Each
surface is spanned by a set of
magnetic field lines and
current stream lines. The
force j × B points inward,
balancing the pressure
gradient

j

B

The same is true for j and ∇ p. Therefore, the vectors B and j must lie in a plane
of constant pressure. The magnetic field lines and the current streamlines span a
magnetic surface, which is also an isobaric surface. Figure 5.6 shows that the force
j × B is directed inward and balances the pressure force.

5.2.2 Magnetic Pressure

The relationship between current density and magnetic induction follows from
Ampere’s law

∇ × B = μ0j , (5.42)

which yields

j × B = 1

μ0
(∇ × B) × B = − 1

μ0
B × (∇ × B) . (5.43)

This expression can be evaluated by using the vector identity for arbitrary vectors a
and b,

a × (∇ × b) = (∇b) · ac − (a · ∇)b . (5.44)

Then, we obtain a tensor ∇B with components (∇B)i j = ∂B j/∂xi . The symbol ac
means that a is held constant in the differentiation by the ∇-operator on its left side.
Finally, we can use (∇B) · B = (1/2)∇(B · B) and obtain

j × B = − 1

2μ0
∇(B2) + 1

μ0
(B · ∇)B . (5.45)

In the term (B · ∇)B we recognize the analogy to the convective derivative in fluid
motion discussed in Sect. (5.1.4). Here, the derivative describes the change of B
(regarding magnitude and orientation) along a field line. Combining (5.41) and
(5.45), we obtain a pressure balance

∇(p + pmag) = (B · ∇)B
μ0

, (5.46)
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which contains the gas pressure p and a new magnetic pressure

pmag = B2

2μ0
. (5.47)

The term on the r.h.s. of (5.46) describes a force that arises from the mechanical
tension of a magnetic field line, which leads to a net force per unit volume when
the field line is curved. Let us shortly discuss this curvature force. For this purpose
we assume a curved flux tube of curvature radius Rc as shown in Fig. 5.7. The
mechanical tension T produces a pair of forces acting on the left and right end of
a small flux tube element of length ds = Rcdθ and cross-section A. Because of the
curvature, the force vectors are tilted by ±dθ/2. Whereas the horizontal part of the
two forces cancel each other, the vertical components add up and give a radial net
force, dFr = 2dF = T Adθ . This is the same principle as used in calculating the
restoring force for a vibrating string.

This mechanical consideration can be related to the term on the r.h.s. of (5.46) in
the following way:

(B · ∇)B
μ0

= B

μ0

dB
ds

= B2

μ0

deθ

ds
= B2

μ0

deθ

Rcdθ
= − B2

μ0 Rc
er . (5.48)

In the first step we have specified that the change of B occurs along the field line
segment ds. In the second step we make the assumption that the magnetic field only
changes orientation but maintains its magnitude. The third step uses the definition of
ds and in the last step, we have used the rotation of the system of coordinates when
we follow the field line. For this specific geometry, the result describes a net volume
force in negative radial direction. Multiplying with the volume A ds we obtain the
same result as from our geometrical consideration in Fig. 5.7. The value of the
elastic stress results from Maxwell’s stress tensor, which associates a magnetic field
with an isotropic magnetic pressure B2/(2μ0) and an additional tension of the field
line T = −B2/μ0 acting only along the field line. This completes the discussion
of the curvature force.

Fig. 5.7 Action of a
mechanical tension of the
field lines in a curved flux
tube. For a short segment ds
of the flux tube the tension
produces a radial net force
dFr = −T A dθ

er

eθ

d θ

dFdF ds

F

Rc

A

F
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5.2.3 Diamagnetic Drift

In this paragraph, we will address the question what the microscopic interpretation
of the current density j in the fluid model is. A steady drift motion can be derived
in the fluid description of the electrons given by (5.28) when we drop the inertial
forces and form the vector product with the magnetic flux density

0 = E × B + (u × B) × B − 1

nq
∇ p × B . (5.49)

Decomposing the mean velocity into components perpendicular and parallel to the
magnetic field direction, u = u⊥ + u‖, and evaluating the double vector product
(u×B)×B = (u⊥ ·B)B− B2u⊥, we obtain the plasma motion across the magnetic
field

u⊥ = E × B
B2

− ∇ p × B
qnB2

= vE + vD . (5.50)

The first term on the r.h.s. is the well-known E×B drift motion. The second term
is called the diamagnetic drift vD. While the former is based on a drift of the guid-
ing centers—as we had derived in the single particle model—the latter drift does
not require any motion of the guiding centers, as can be seen from the cartoon in
Fig. 5.8a. The superposition of the ring currents represented by gyrating particles
that have an inhomogeneous distribution of guiding centers gives a net electric cur-
rent. The same net current arises at the surface of a finite size magnetoplasma, as
shown in Fig. 5.8b.

Instead of being generated by an inhomogeneous density of guiding centers, such
net currents are also produced by temperature gradients, which affect the gyroradius
and the orbit velocity of the particles. Both effects are covered by the pressure gra-
dient that determines the diamagnetic drift. As a rule, the pressure gradient does not
produce a motion of the guiding centers.

Comparing with the description in the single particle model, we can state that
the magnetic moment associated with each gyrating particle contributes to a dia-
magnetic magnetization of the plasma, i.e., a reduction of the magnetic flux density.
The magnetization is the product of the individual magnetic moment, μ ∝ W⊥, see

j

j(a) (b)

n

Fig. 5.8 (a) The inhomogeneous distribution of guiding centers gives rise to the diamagnetic drift
which represents a net current j . (b) Surface current of a finite size homogeneneous magneto-
plasma
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Fig. 5.9 Magnetic pressure
and kinetic pressure in the
cross-section of a hot plasma
column with effective radius
a. The diamagnetic currents
weaken the magnetic
induction. The decrease of
magnetic pressure in the
center is described by the β

factor

(3.34), and the density of guiding centers. Hence, the diamagnetic magnetization is
proportional to the particle pressure. This is just what the fluid model says when
it balances pressure gradient and the Lorentz force from the diamagnetic current
in (5.28).

Applying this understanding of the diamagnetic current to a magnetically con-
fined fusion device, we can start from the pressure balance pkin + pmag = ptotal =
const, which results from (5.46), when we neglect the curvature force. Since the
kinetic pressure vanishes in the cool outer layers at the plasma surface, the mag-
netic field inside the plasma is weakened by the diamagnetism which increases with
plasma kinetic pressure pmag = ptotal − pkin, and takes a minimum in the center
of the plasma (see Fig. 5.9). This decrease of magnetic confinement in the plasma
center is described by the ratio β of the kinetic pressure at the center to the total
pressure at the surface, which is given by the magnetic pressure,

β = pkin(0)

ptotal
. (5.51)

5.3 Magnetohydrodynamics

In the preceding section we have described the plasma by two interpenetrating
fluids. The resulting momentum equations could be combined into a single equa-
tion that describes the mass motion. In this section we further introduce the rel-
ative motion between electron and ion fluid, which represents the electric current
density

j = ne(ui − ue) . (5.52)

Such a single-fluid model of mass motion and electric current flow is called magne-
tohydrodynamics (MHD).
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5.3.1 The Generalized Ohm’s Law

A dynamic equation for the spatio-temporal evolution of the current results from the
momentum (5.37) after multiplying the ion equation by me and the electron equation
by mi, and subtracting the equations:

nmime
∂

∂t
(ui − ue) = ne(me + mi)E + ne(meui + miue) × B

−me∇ pi + mi∇ pe + n(me + mi)νeime(ue − ui) . (5.53)

This equation can be simplified by neglecting me in the sum of the masses. The
mixed term

meui + miue = m iui + meue + mi(ue − ui) + me(ui − ue) (5.54)

= 1

n
ρmvm − (mi − me)

1

ne
j (5.55)

can be decomposed into contributions from mass motion and current density, which
results in

mime

e

∂j
∂t

= eρm

(
E + vm × B − νeime

ne2 j
)

−mij × B − me∇ pi + mi∇ pe . (5.56)

As long as we are interested in slowly varying phenomena, we can set ∂j/∂t = 0 and
neglect terms of the order of me/mi. In this way we obtain the generalized Ohm’s
law

E + vm × B = ηj + 1

ne
(j × B − ∇ pe) . (5.57)

Here, η = νeime/ne2 is the plasma resistivity that arises from Coulomb collisions
between electrons and ions. The l.h.s. of (5.57) is the correct electric field in the
moving reference frame. This electric field balances the voltage drop η j by the
resistivity, the contribution from the Hall effect j×B/(ne), and the electron pressure
term −∇ pe/ne.

5.3.2 Diffusion of a Magnetic Field

As an application of the generalized Ohm’s law, we consider a plasma that is moving
at a velocity vm, and at an arbitrary angle to the magnetic field direction. We start
from

E + vm × B = ηj = η

μ0
∇ × B , (5.58)
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where the Hall and pressure term were neglected for simplicity. By taking the curl
we have

∇ × E + ∇ × (vm × B) = η

μ0
∇ × (∇ × B) . (5.59)

Using Faraday’s induction law, we obtain a differential equation that links the mag-
netic field to the mass motion

− ∂B
∂t

− η

μ0
∇ × (∇ × B) = −∇ × (vm × B) . (5.60)

Let us first consider the situation with a plasma at rest, vm = 0. In this case,
(5.58) attains the mathematical shape of a time-dependent diffusion equation

− ∂B
∂t

+ DBΔB = 0 , (5.61)

which describes the diffusion of magnetic field lines in a conducting medium. The
magnetic diffusion coefficient is DB = η/μ0. We can estimate the diffusion time
τB by setting B(t) ∝ exp(−t/τB) and replacing the Laplacian by the square of a
characteristic scale length �B ≈ B/�2

τB = μ0�
2

η
. (5.62)

With decreasing resistivity the diffusion time gets longer and longer. This consider-
ation is not restricted to plasmas. For the conditions in the metallic core of the Earth
we obtain τB ≈ 104 years. Not surprisingly, this is just the time for the observed
reversal of the Earth magnetic field. Even a copper sphere of 1 m diameter has a
long diffusion time of ≈ 10 s.

The relative importance of the diffusion term and the flow term in (5.60) can be
estimated by a similar dimensional analysis

η

μ0
∇ × (∇ × B) ≈ η

μ0

B

�2 , ∇ × (vm × B) ≈ vm B

�
. (5.63)

This leads to the definition of the magnetic Reynolds number

Rm = μ0vm�

η
, (5.64)

which characterizes the ratio of mass flow to magnetic diffusion.
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5.3.3 The Frozen-in Magnetic Flux

The conductivity of a hot plasma is many times larger than that of metals. Therefore,
we can describe hot laboratory plasmas or astrophysical plasmas by the concept of
infinitely large conductivity (zero resistivity). This theory is named ideal magneto-
hydrodynamics and is reached for Rm → ∞. From (5.60), this limit gives us the
relationship

∂B
∂t

= ∇ × (vm × B) . (5.65)

Using the identity

∇ × (vm × B) = (B · ∇)vm − (vm · ∇)B + vm (∇ · B)︸ ︷︷ ︸
=0

−B(∇ · vm) (5.66)

and the continuity (5.8) in the form

∇ · vm = − 1

ρm

(
∂ρm

∂t
+ (vm · ∇)ρm

)
= − 1

ρm

dρm

dt
(5.67)

we obtain the relation

dB
dt

= (B · ∇)vm + B
ρm

dρm

dt
. (5.68)

We can further use the identity

d

dt

(
B
ρm

)
= 1

ρm

dB
dt

− B
ρ2

m

dρm

dt
, (5.69)

which results in the theorem of Truesdell [80]

d

dt

(
B
ρm

)
=

(
B
ρm

· ∇
)

vm . (5.70)

The quantity B/ρm can be considered as the number of field lines per unit mass
of the plasma. When the mass flow is strictly perpendicular to the magnetic field,
the r.h.s. vanishes. Hence, B/ρm becomes a conserved quantity. This means that the
mass motion can only occur together with the magnetic field. In other words, the
magnetic flux is frozen into the plasma. When the mass motion has a field-aligned
component, the r.h.s. describes the (B/ρm)-weighted rate of change of the mass flow
velocity along the field line. This slipping along the field line for inhomogeneous
flows allows a change of B/ρm.
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5.3.4 The Pinch Effect

A very efficient technique to produce a hot plasma without caring for long confine-
ment times is the concept of a pinch discharge. With high pulsed currents, rang-
ing from 10 kA to several MA, a plasma can be magnetically confined and heated
to millions of degrees. Two different geometries are using the pinch effect (see
Fig. 5.10), the Z -Pinch and the Θ-pinch. The names give the direction of current
flow in cylindrical coordinates. In the Z -pinch the plasma is in contact with metallic
electrodes, which may be responsible for plasma contamination. The Θ-pinch has
no electrodes. Rather, the current Iθ in an external coil of only one winding induces
an opposing surface current −Iθ of the plasma cylinder. Both currents create an
axial magnetic field Bz in the gap. In both cases the plasma is squeezed into a narrow
cylinder under the action of the magnetic pressure at the plasma surface.

The equilibrium of a Z -pinch can be described by the balance of kinetic pressure
in the center and magnetic pressure at its surface, r = a,

nkB(Te + Ti) = B(a)2

2μ0
. (5.71)

The magnetic field at the plasma surface is calculated from the total current by using
Ampere’s law

B(a) = μ0 I

2πa
. (5.72)

From these two equations we can find the relationship between the temperature on
the discharge axis, the radius of the compressed plasma, and the total current

(Te + Ti) ∝ I 2

a2
, (5.73)

which is known as the Bennett-relation, named after Willard Bennett, who already,
in 1932, studied the plasma pinch effect [81]. Note that the temperature increases
with the square of the discharge current. Modern Z -pinch experiments [82, 83] start

Fig. 5.10 (a) Z -pinch und
(b) Θ-pinch. Magnetic
self-confinement by the pinch
effect is achieved by pulsed
high-current discharges

Iz

Bz

Bθ

(a) (b)

–Iθ

Iθ
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from a cylindrical wire-cage that vaporizes into a plasma and implodes under the
magnetic pressure from several ten MA current.1

5.3.5 Application: Alfvén Waves

The concept of frozen-in magnetic flux can be best demonstrated by studying low-
frequency waves of a magnetized plasma. Such MHD waves were predicted by
Alfvén [84, 85] and were first generated in liquid metals [86, 87] before they were
demonstrated in magnetized plasmas, e.g., [88–90].

5.3.5.1 The Shear Alfvén Wave

We know from introductory mechanics courses that simple harmonic waves of a
fluctuating quantity, e.g., the gas density n in a sound wave, are described by a
second-order differential equation of the type

[
∂2n

∂t2
− v2 ∂

2n

∂z2

]
= 0 . (5.74)

The quantity v is the phase velocity of the wave and wave solutions have the form

n(x, t) = n̂ sin[k(x ± vt)] . (5.75)

Here, k = 2π/λ is the wavenumber. The ± sign indicates that waves can propagate
in ±x direction because the wave equation only depends on v2.

The starting point of our calculation is the ideal MHD (η = 0), which ensures
that an internal magnetic field cannot leave the plasma by magnetic diffusion. The
momentum equation is written in the simplified form

ρm
∂vm

∂t
= j × B (5.76)

and the evolution of the magnetic field is given by (5.65) and (5.66) as

∂B
∂t

= (B · ∇)vm − (vm · ∇)B − B(∇ · vm) . (5.77)

Since we are not interested in sound waves of the plasma, the additional assumption
of an incompressible flow ∇·vm = 0 is made, which gives ρm = const. Sound waves
will be discussed separately in Sect. 6.5.3. The linear wave analysis assumes that the

1 For recent experiments, see Sandia National Lab’s website http://zpinch.sandia.gov/



126 5 Fluid Models

magnetic field and the mass velocity can be decomposed into a homogeneous and
stationary equilibrium (subscript 0) and a wavelike perturbation (subscript 1).

B = B0 + B1

vm = v0 + v1 . (5.78)

The magnetic field B0 = (0, 0, B0) defines the z-direction and the plasma is
assumed to be at rest, v0 = 0. Then the perturbed quantities are described by

ρm
∂v1

∂t
= 1

μ0
(∇ × B1) × B0 (5.79)

∂B1

∂t
= (B0 · ∇)v1 . (5.80)

Here, we have dropped the second-order term (vm · ∇)B. We now seek for perpen-
dicular pertubations of the magnetic field B1 = (B1x , 0, 0), which describe a local
transverse displacement of a field line in x-direction. For calculating the stream-
ing velocity, we must decompose the double vector product (∇ × B1) × B0 =
(B0 · ∇)B1 − (∇B1) · B0. Since B1 has only an x-component, and B0 is ori-
ented in z-direction, the expression (∇B1) · B0 vanishes. Likewise, (B0 · ∇)B1 =
B0(∂B1x/∂z)ex and the acceleration of the mass is also in x-direction. In this way,
we obtain the coupled set of equations

ρm
∂v1x

∂t
= B0

μ0

∂B1x

∂z
∂B1x

∂t
= B0

∂v1x

∂z
, (5.81)

which can be combined into a wave equation for either of the perturbed quantities

[
∂2

∂t2 − v2
A

∂2

∂z2

]
v1x = 0

[
∂2

∂t2
− v2

A
∂2

∂z2

]
B1x = 0 . (5.82)

This equation describes a transverse wave that propagates along the magnetic field
line (see Fig. 5.11). This is the shear-Alfvén wave. A different shear-wave in a solid
is described in Fig. 10.37b. The propagation velocity vA is the Alfvén speed

vA =
(

B2
0

μ0ρm

)1/2

. (5.83)
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Fig. 5.11 The deformed
field-line pattern of a
transverse Alfvén wave
propagating along the
magnetic field B0

B0

B1
B

z

vphase

Although the Alfvén speed contains the term B2
0/μ0, it is misleading to associate

this with the magnetic pressure. The transverse wave, like any shear wave, conserves
the volume between the field lines and there is no compression of the plasma or of
the bundle of magnetic field lines. Hence, the wave must be driven by a different
mechanism.

The force, which a magnetic field exerts on a certain volume, is obtained by
integrating the Maxwell stress tensor [74] over the surface of that volume

Fα =
∮

Sαβ dAβ (5.84)

and the magnetic part of the stress tensor is defined as

Sαβ = μ0

2

⎛
⎝−B2

0 0 0
0 −B2

0 0
0 0 +B2

0

⎞
⎠ = −pmag

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ +

⎛
⎝ 0 0 0

0 0 0
0 0 2pmag

⎞
⎠ . (5.85)

The Maxwell stress can be decomposed into an isotropic magnetic pressure pmag
and an opposing tension of magnitude T = 2pmag along the field line. Then, the
propagation velocity can be rewritten as

vA =
(

T

ρm

)1/2

, (5.86)

which shows the similarity of the Alfvén wave mechanism to a plucked string. Here,
the tension T of the magnetic field line replaces the mechanical tension, which
restores the string to its resting position. This was already discussed for the curva-
ture force in Sect. 5.2.2. Moreover, the inertia of the string is replaced by the mass
density ρm of the plasma. This means that the mass remains attached to the field line
as predicted by the concept of frozen-in flux.

5.3.5.2 The Compressional Alfvén Wave

For completeness, it should be mentioned at the end that there is a different type
of Alfvén wave, which propagates across the magnetic field direction and involves
compression of the magnetic field (see Fig 5.12). When effects from gas pressure
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Fig. 5.12 Compressional
Alfvén wave propagating
across the magnetic field
lines. Note the bunching of
the field lines that can be
interpreted as the
superposition of a parallel
pertubing field B1

x

z

vphase

B1

B0

can be neglected (pkin � pmag) the phase velocity becomes again vφ = vA, but this
time the analogy with a sound wave, cs = (γ p/ρ)1/2, is justified. In this situation,
the magnetic pressure takes the role of gas pressure and γ = 2 reflects that there
are two degrees of freedom corresponding to the two directions perpendicular to
the magnetic field. When the kinetic pressure cannot be neglected, the compres-
sional Alfvén wave becomes a magnetosonic wave, whose propagation speed is
determined by vϕ = (v2

A + c2
s )

1/2.

5.3.6 Application: The Parker Spiral

The solar wind is a highly conducting medium. Therefore, the magnetic field is
frozen into the mass flow of the expanding plasma. In Sect. 1.2.3 we had seen that
the rotation of the Sun shapes the mass flow into an Archimedian spiral, as shown
in Fig. 1.5, which is named the Parker spiral in honor of Eugene Parker who first
described this structure by MHD [20]. Here, we will now consider the consequences
for the interplanetary magnetic field.

If the Sun did not rotate, the solar wind would simply expand in flux tubes formed
by radial magnetic field lines, see Fig. 5.13. Because of flux conservation in this
spherical geometry, the mass density would decrease as (r/r�)−2. In the same way,

Fig. 5.13 Cartoon of a
hypothetical purely radial
magnetic flux tube for a
non-rotating Sun and the flux
tubes forming the Parker
spiral
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the magnetic flux conservation would give Br ∝ (r/r�)−2. This property does also
apply in the presence of solar rotation, because the formation of an Archimedian
spiral is simply a transformation to a rotating coordinate system, which does not
affect the number of field lines traversing a spherical shell of radius r . In addition to
the radial magnetic field component Br , there will also be an azimuthal component
Bϕ in the solar equatorial plane.

The condition for a frozen-in magnetic field (5.65) for a stationary flow becomes
0 = ∇ × (u × B), which reads in spherical coordinates

0 = 1

r

∂

∂r
[r(uϕ Br − ur Bϕ)] , (5.87)

or r(uϕ Br − ur Bϕ) = const. At the surface of the Sun we have uϕ = ω�r� and the
magnetic field there has only a radial component Br = B0, which results in

r(uϕ Br − ur Bϕ) = ω�r2� B0 . (5.88)

This relation gives us the azimuthal magnetic field in the spiral-shaped flux tube

Bϕ = r(uϕ Br − ω�r2�B0)

rur
= −ω�(r − r�)

ur
Br . (5.89)

In the last step we have used Br = B0(r�/r)2. For large distances, r 
 r�, we
have ω�r 
 uϕ . Then the azimuthal component of the magnetic field drops off as
Bϕ ∝ r−1 whereas the radial component decreases as Br ∝ r−2. This means that
the magnetic field direction changes from radial near the Sun to azimuthal at the
orbits of the outer planets. At 1 AU, the inclination is arctan(Bϕ/Br ) ≈ 45◦. The
intensity of the magnetic field decreases as

B(r) = B0
r2�
r2

[
1 +

(
ω�(r − r�)

ur

)2
]1/2

. (5.90)

So far, we were only interested in the development of the magnetic field com-
ponents along an individual flux tube that forms one branch of the Parker spiral.
Since the Sun cannot be a magnetic monopole with outgoing field lines of same
polarity, it is not surprising that under quiet conditions, the Parker spiral has two or
four sectors of alternating polarity, which are stable for many solar rotation periods.
At solar maximum conditions, the sector structure is complex and characterized by
a large number of transient disturbances.
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The Basics in a Nutshell

• The fluid models treat the electrons and ions as fluids and seek self-
consistency of the problems by combining the fluid equations with the set
of Maxwell’s equations:

Faraday’s induction law ∇ × E = −∂B/∂t

Ampere’s law ∇ × B = μ0 (j + ε0∂E/∂t)

Poisson’s law ∇ · E = ρ/ε0

no magnetic monopoles ∇ · B = 0

• The two-fluid model is based on separate equations for electrons and ions
and describes the continuity and momentum flow of the fluids:

continuity ∂n/∂t + ∇ · (nu) = 0

momentum tansport nm
(
∂u
∂t + (u · ∇)u

) = nq(E + u × B) − ∇ p

• The MHD-equations describe the mass transport and the electric current in
a single fluid:

momentum transport ρm
∂vm
∂t = j × B − ∇ p + ρmg

generalized Ohm’s law E + vm × B = ηj + 1
ne (j × B − ∇ pe)

• The diamagnetic drift is a net effect in an inhomogeneous distribution of
guiding centers. A net electric current is established without motion of the
guiding centers.
The diamagnetic drift velocity is vD = −[∇ p × B](qnB2)−1.

• A magnetic field exerts an isotropic magnetic pressure pmag = B2
0 (2μ0)

−1

and has a field line tension T = 2pmag.
• When the plasma is an ideal conductor, the magnetic field is frozen in the

plasma. The combined motion of plasma and magnetic field leads to Alfvén
waves, which propagate at the Alfvén speed vA = B0(μ0ρm)−1/2.

Problems

5.1 (a) Consider the pressure equilibrium in a Z -pinch that has been compressed
by its self-generated magnetic field to a radius of 100 μm. What is the magnetic
pressure at the surface of the pinch, when the total current amounts to 10 kA? How
compares this to atmospheric pressure?
(b) Assume that the plasma inside the pinch is homogeneous and has Te = Ti and
density ne = 1024 m−3. What is the temperature inside this plasma that is necessary
to balance the magnetic pressure by gas kinetic pressure?
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5.2 Calculate the magnetic field B that is necessary to produce a magnetic pressure
at the surface of a magnetically confined fusion that is 4 times the kinetic pressure in
the plasma center, when the central density is ne = 2×1020 m−3 and the temperature
T = 20 keV. This corresponds to β = 25%.

5.3 What is the Alfvén speed in a fusion plasma with deuterium ions of ni =
1020 m−3 density at a typical magnetic field of B = 3 T?

5.4 The ionospheric F-layer has a plasma density of n = 1012 m−3 and consists
mainly of O+-ions.
(a) What is the Alfvén speed at a typical magnetic field of B = 3 · 10−5 T?
(b) Compare this result with the ion sound speed at a temperature Te = Ti = 3000 K.

5.5 For the Parker spiral, draw a log-log plot of the normalized magnetic field
B(r)/B0 and its components, Br/B0 and Bϕ/B0, vs. the normalized radial position
r/r�. Assume ur = 4 × 105 m s−1 and a solar rotation period of 27 d. Mark the
position of the Earth’s orbit in this plot.

5.6 A method to determine the temperature of a hot magnetized plasma column is
based on measuring the change in magnetic flux when the plasma is switched off.
This can be done by a diamagnetic loop of N windings, which is wound around
the (non-conducting) cylindrical vessel of radius R that is assumed to contain the
plasma column. Faraday’s induction law gives ΔΦmag = −N

∫
Uind dt . Hence, the

time integral of the voltage pulse from the diamagnetic loop gives the change in
magnetic flux. To derive a relation between plasma temperature and integrated loop
voltage, we assume that Te = Ti = const. The density profile is approximated by
a Gaussian n(r) = n0 exp[−(r/a)2] with a2 � R2. Use the pressure equilibrium
pkin(0)+ pmag(0) = pmag(R) and calculate the total change in magnetic flux �Φmag

from its vacuum value. Show that �Φmag ≈ − 1
2πa2n0 B0β in the limit β � 1 with

β from (5.51).



Chapter 6
Plasma Waves

“What is the use of a book”, thought Alice, “without pictures
or conversations?”

Lewis Carroll, Alice in Wonderland

The interest in wave propagation in plasmas has different roots. One of these
was the reflection of electromagnetic waves by the ionosphere [91]. Stimulated
by Guglielmo Marconi’s (1874–1937) experiments on long-distance radio in 1901,
Oliver Heaviside (1850–1925) [92] and, independently, Arthur Edwin Kennelly
(1861–1939) [93] postulated, in 1902, that the Earth’s atmosphere at high altitude
must contain an electrically conducting layer that reflects radio waves like a mirror.
Many decades before, in 1839, Carl Friedrich Gauss (1777–1855) had conjectured
that the fluctuations of the Earth magnetic field might be related to electric currents
in the high atmosphere. The quantitative investigation of the ionoshere with radio
waves began in the years 1924–1927 with the vertical sounding experiments in the
U.S. of Gregory Breit (1899–1981) and Merle Antony Tuve (1901–1982) [94, 95],
and in Great-Britain by Edward V. Appleton (1892–1965) [96], which proved the
existence of a conducting atmospheric layer, now named the ionosphere, in the alti-
tude regime of (100–500) km. At the same time, Irving Langmuir, at the General
Electric Laboratories, discovered high-frequency fluctuations in gas discharges, now
known as Langmuir oscillations [97].

At the introductory level of this book we are interested in the classification of
the fundamental wave types in a plasma, which elucidate the diverse mechanisms
that lead to wave phenomena. At the same time we will discuss the application of
various wave types for plasma diagnostics. There is a number of modern text books
[98–101] that give a comprehensive description of plasma waves.

6.1 Maxwell’s Equations and the Wave Equation

In this Section, the interaction of the plasma particles with an electromagnetic wave
is investigated in terms of a new concept in which the plasma is considered as a
dielectric medium. For this purpose, the linear response of the plasma particles to
the wave field is included in the dielectric constant of the plasma medium, which

A. Piel, Plasma Physics, DOI 10.1007/978-3-642-10491-6_6,
C© Springer-Verlag Berlin Heidelberg 2010
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determines the propagation speed and polarization of the plasma waves. This model
is developed step by step starting from Maxwell’s equations.

6.1.1 Basic Concepts

Plasma waves are described by the set of Maxwell’s equations

∇ × E = −∂B
∂t

(6.1)

∇ × B = μ0

(
j + ε0

∂E
∂t

)
(6.2)

and a proper equation of motion for the plasma species that establishes the relation
between the alternating electric current j(E)

j = ne(vi − ve) , (6.3)

and the electric field. The simplest case is the description of the plasma particles in
the model of single-particle motion. The velocities ve,i are solutions of Newton’s
equation that is expanded by an additional friction force that is described by a colli-
sion frequency νm for momentum loss,

m (v̇ + νmv) = q(E + v × B) . (6.4)

In warm plasmas, we could include pressure effects by solving the MHD equations
for the variable j. Other effects related to the distribution function of velocities, e.g.,
Landau damping, will be discussed in Chap. 9.

For discussing the propagation properties of the waves, we make the additional
simplifying assumption that, at a chosen angular frequency ω, the relation between
the alternating current j(ω) and the electric field strength at that frequency E(ω) is
linear or can be linearized by suitable approximations

j(ω) = σ(ω) · E(ω) . (6.5)

Here, σ(ω) is the frequency-dependent conductivity. Taking the curl in the induction
law (6.1), we obtain the wave equation

∇ × (∇ × E) = −∇ × ∂B
∂t

= − ∂

∂t
(∇ × B)

= −μ0ε0
∂2E
∂t2

− μ0
∂j
∂t

. (6.6)
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With μ0ε0 = 1/c2, the wave equation for the electric field takes the form

∇ × (∇ × E) + 1

c2

∂2E
∂t2 = −μ0

∂j
∂t

. (6.7)

6.1.2 Fourier Representation

The wave equation has solutions that are plane monochromatic waves of the form

E = Ê exp[i(k · r − ωt)]
B = B̂ exp[i(k · r − ωt)]
j = ĵ exp[i(k · r − ωt)] . (6.8)

Here, k is the wave vector, which describes the direction of wave propagation. The
magnitude of the wave vector is related to the wavelength by k = 2π/λ. The wave
amplitudes Ê and ĵ are complex quantities, which give us a simple way to include
a phase shift between current density and electric field. Both are functions of fre-
quency and wavenumber, e.g., Ê = Ê(ω,k). Using this plane wave representation,
we can establish simple substitution rules for the differential operations in the wave
equation

∇ × E → ik × Ê , ∇ · E → ik · Ê ,
∂

∂t
E → −iωÊ . (6.9)

In this way Maxwell’s equations (6.1) and (6.2) can be rewritten in terms of a set of
algebraic relations between the complex wave amplitudes

ik × Ê = iωB̂ (6.10)

ik × B̂ = −iωε0μ0Ê + μ0ĵ0 . (6.11)

Here, the term exp[i(k · r − ωt)] describing the phase evolution in space and time
could be dropped.

6.1.3 Dielectric or Conducting Media

Since we have assumed a linear relation between the alternating current and the
electric field, we can give different interpretations to the current density. When we
consider the plasma as a dielectric medium, we can think of the wiggling motion
of electrons and ions as a polarization current, which can be combined with the
vacuum displacement current ε0(∂E/∂t). In the limit of very high frequencies only
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the electrons will oscillate about their mean position while the much heavier ions
will be immobile. Hence, we are allowed to consider the plasma as a set of dipoles
formed by pairs consisting of an electron oscillating about a corresponding ion at
rest. Such a medium is characterized by the dielectric displacement

D̂(ω) = ε0ε(ω)Ê(ω) . (6.12)

Noting that for a given frequency ω, the displacement current can be considered as
the sum of the vacuum displacement current plus the conduction current,

∂D
∂t

= ε0
∂E
∂t

+ j = ε0ε(ω)
∂E
∂t

. (6.13)

This gives us a relation between the dielectric function ε(ω) and the electric con-
ductivity σ(ω)

ε(ω) = 1 + i

ωε0
σ(ω) . (6.14)

In the following, we will call ε(ω) the dielectric function when the frequency depen-
dence is considered. For a specific value of ω, we will name ε(ω) the dielectric
constant for that frequency.

In an unmagnetized plasma, σ(ω) and ε(ω) are simple scalar functions of the
wave frequency ω. A magnetized plasma, however, is anisotropic because of the
different motion along and across the magnetic field. Therefore, dielectric function
and conductivity then become tensors, see Sect. 3.2 of Appendix.

εω = I + i

ωε0
σω . (6.15)

Here, I is the unit tensor. This means that the electric field vector E and the electric
current vector j may be no longer parallel to each other. Moreover, collisions of the
plasma particles make the plasma a lossy dielectric medium and ε(ω) is in general
a complex function.

In conclusion, there are two different views of the plasma medium. For weak
losses, the plasma behaves mostly as a dielectric and is described by a dielectric
function (or tensor) ε(ω), in which the real part is dominant over the imaginary part.
When the collisions are frequent, the plasma behaves mainly as a conductor and is
described by a complex conductivity σ(ω), in which the imaginary part represents
phase shifts resulting from inertial effects. In the following, we will be mostly inter-
ested in cases, where the plasma waves are weakly damped. Then, the dielectric
tensor elements are mostly real quantities. Therefore, we will prefer the dielectric
description of a plasma.
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6.1.4 Phase Velocity

We define the phase ϕ of a monochromatic wave by

ϕ = k · r − ωt . (6.16)

A point of constant phase (think of wave crests or troughs) within a wave moves
with a velocity that is defined by the constancy of the phase

0 = dϕ

dt
= k · dr

dt
− ω . (6.17)

Hence, the phase velocity is defined as

vϕ = ω

k2
k . (6.18)

The phase velocity is a vector with the magnitude vϕ = ω/k and the vector has the
same orientation as the wave vector k.

6.1.5 Wave Packet and Group Velocity

Let us now consider the propagation of two waves, which is the simplest case of a
wave packet. The frequencies and wave numbers are assumed to be close to each
other, i.e., |ω1 − ω2| � (ω1 + ω2)/2, |k1 − k2| � (k1 + k2)/2. For simplicity, we
also assume that the waves have the same amplitude and propagate in x-direction.
Then, the wave packet is the superposition of the two sine waves

E(x, t) = sin(k1x − ω1t) + sin(k2x − ω2t) . (6.19)

Using the theorem for addition of sines we obtain

E(x, t) = 2 sin

(
k1 + k2

2
x − ω1 + ω2

2
t

)
cos

(
k1 − k2

2
x − ω1 − ω2

2
t

)
.

(6.20)

This gives us the well known interference pattern (Fig. 6.1), in which we find a sine
term that describes a rapid oscillation at the arithmetic mean of the two frequencies
and wavenumbers and a cosine term that describes the envelope of the signal. The
phase velocity of this signal is given by the sine term as

vϕ = (ω1 + ω2)/2

(k1 + k2)/2
= ω̄

k̄
. (6.21)
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Fig. 6.1 Interference of two
sine waves of same
amplitude. The instantaneous
phase propagates at the phase
velocity vϕ , the envelope has
a different propagation
velocity, the group
velocity vgr –

–

The envelope moves at a different velocity, the group velocity, which results from
the phase evolution of the cosine term

vgr = (ω1 − ω2)/2

(k1 − k2)/2
= Δω

Δk
. (6.22)

In the more general case of an extended wave packet consisting of many wavelets
one can show that the group velocity is given by the expression

vgr =
(

∂ω

∂kx
,
∂ω

∂ky
,
∂ω

∂kz

)
= ∇kω = dω

dk
. (6.23)

The analogy to the simpler case given above is evident. The group velocity has the
magnitude vgr = dω/dk.

Why have group velocity and phase velocity different values? In Fig. 6.2a the
relationship between frequency ω and wavenumber k is shown for a dispersive
medium. The phase velocity is constructed by choosing a point (ω, k) on the disper-
sion curve and evaluating tanα = ω/k = vϕ . The tangent to the dispersion branch
at this point (ω, k) has a different slope, tanβ = dω/dk = vgr. Obviously phase
velocity and group velocity are different in this example. A non-dispersive medium
is characterized by the equality of phase and group velocity, as shown in Fig. 6.2b.
Obviously, vgr = vϕ can only be achieved by a dispersion relation that is represented
by a straight line through the origin.

Fig. 6.2 (a) The phase
velocity is the quotient
ω/k = tan(α). The slope of
the tangent to the function
ω(k) is the group velocity,
dω/dk = tan(β). (b) A
non-dispersive medium has
vgr = vϕ

kk k k

β
dω/dk

dω/dk

(a) (b)dispersive medium non-dispersive medium

ω

ω ω

ω

α α
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In an anisotropic medium, such as a magnetized plasma, the direction of the
group velocity is not necessarily parallel to the phase velocity. There are exotic
situations, e.g., for Whistler waves, where phase velocity and group velocity can
become even perpendicular to each other [99, 100].

6.1.6 Refractive Index

In optics the refractive index of a transparent medium is defined as the ratio of the
speed of light in vacuum to the speed in that medium. This concept can be applied
in a similar manner to electromagnetic waves in a plasma. Hence, we define the
refractive index as

N = kc

ω
. (6.24)

Because of the proportionality of N and k, we can also define a refractive index
vector N = (c/ω)k. Obviously, this is the complement to the phase velocity because
it points in the direction of wave propagation but has a magnitude ∝ v−1

ϕ . As in
optics, the concept of refractive index is useful for wave refraction, ray tracing, or
interferometry.

6.2 The General Dispersion Relation

In this Section, we discuss the wave equation in Fourier representation. Using the
vector identity k × (k × Ê) = (kk − k2I)Ê, the homogeneous wave equation for the
Fourier amplitudes (6.7) can be transformed into one of the following forms

{
kk − k2 I + ω2

c2
I + iωμ0σ (ω)

}
· Ê = 0 (6.25)

{
kk − k2 I + ω2

c2 ε(ω)

}
· Ê = 0 . (6.26)

Here, the dyadic product kk of the wave vectors is defined as the tensor

kk =

⎛
⎜⎜⎝

kx kx kx ky kx kz

kykx kyky kykz

kzkx kzky kzkz

⎞
⎟⎟⎠ . (6.27)
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Equations (6.25) or (6.26) represent a homogeneous linear system of equations for
the electric field vector. This can be explicitely written for the dielectric model as

⎛
⎜⎜⎜⎜⎜⎝

kx kx − k2 + ω2

c2
εxx kx ky + ω2

c2
εxy kx kz + ω2

c2
εxz

kykx + ω2

c2
εyx kyky − k2 + ω2

c2
εyy kykz + ω2

c2
εyz

kzkx + ω2

c2
εzx kzky + ω2

c2
εzy kzkz − k2 + ω2

c2
εzz

⎞
⎟⎟⎟⎟⎟⎠

·
⎛
⎝ Êx

Êy

Êz

⎞
⎠ = 0 .

(6.28)

Non-vanishing solutions for E �= 0 are only possible when the determinant of the
matrix is zero. This determinant condition defines an implicit relation between fre-
quency and wave number, which we will name the dispersion relation,

0 = D(ω,k) = det

[
kk − k2 I + ω2

c2 ε(ω)

]
. (6.29)

In many cases, the relationship between ω and k, which is defined by the zeroes
D(ω,k) = 0, can be written in an explicit form, ω(k). As a rule, this relation has
multiple branches. The explicit form is also called the dispersion relation of a wave.

In summary, (6.28) describes all possible wave modes of a plasma. The spe-
cific properties of the plasma are encoded in the elements of the dielectric tensor.
Unmagnetized plasmas are isotropic media, for which the dielectric tensor reduces
to a scalar dielectric function. It is the magnetic field that introduces anisotropy and
requires a description by a tensor (cf. Sect. 6.6).

6.3 Waves in Unmagnetized Plasmas

Here, we investigate the wave modes in a plasma without the influence of a magnetic
field. We will first consider very high frequency waves, for which the ion motion,
because of the much larger ion inertia, can be neglected. This can be immediately
seen from Newton’s equation

m
dv
dt

= qÊei(k·r−ωt) , (6.30)

from which the alternating current at the angular frequency ω becomes

ĵ = nqv̂ = i
ne2

ωm
Ê . (6.31)

Obviously the ion current is smaller by a factor me/mi than the electron current. At
high frequencies the ions only act as an immobile neutralizing charge background.
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In the last paragraph, we will introduce low-frequency electrostatic waves, where
the ion motion becomes important.

6.3.1 Electromagnetic Waves

As a first example we study electromagnetic waves in the limit of a cold plasma,
i.e., we neglect pressure effects. Further we neglect collisions of the electrons with
neutrals. The coordinate system is chosen with the wave vector in x-direction, k =
(kx , 0, 0). From (6.31) we know that the directions of electric current and electric
field are parallel. Hence, the conductivity tensor has only diagonal elements that
have the same value.

σxx = σyy = σzz = i
ne2

ωm
(6.32)

and the dielectric tensor has only the components

εxx = εyy = εzz = 1 + i

ωε0
σyy = 1 − ω2

pe

ω2 . (6.33)

In the latter expression we have introduced the electron plasma frequency

ωpe =
(

ne2

ε0me

)1/2

. (6.34)

The electron plasma frequency had already been introduced in Sect. 2.2 as the recip-
rocal of the electron reponse time. Here, it is the natural frequency of the electron
gas, as we will see below. Taking into account that for the chosen geometry we have
kx kx − k2 = 0 and ky = kz = 0, the wave (6.26) becomes

⎛
⎜⎜⎜⎜⎜⎜⎝

ω2

c2

(
1 − ω2

pe

ω2

)
0 0

0 −k2 + ω2

c2

(
1 − ω2

pe

ω2

)
0

0 0 −k2 + ω2

c2

(
1 − ω2

pe

ω2

)

⎞
⎟⎟⎟⎟⎟⎟⎠

·
⎛
⎝ Êx

Êy

Êz

⎞
⎠ = 0 .

(6.35)

Obviously, the problem has a cylindrical symmetry about the x-direction, which
manifests itself by the identical response in y and z-direction. We can now distin-
guish three cases:

• longitudinal waves: Êx �= 0 but Êy = Êz = 0.
• transverse waves: Êx = Êz = 0 but Êy �= 0,
• or Êx = Êy = 0 but Êz �= 0.
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The transverse waves are twofold degenerate corresponding to the two possible
directions of polarization in y or z-direction. The case of longitudinal waves will
be postponed to Sect. 6.5.1. Here, we will focus on the transverse waves. For this
purpose we set Êx = 0 and retain only the middle line in the set of (6.35),

(
−k2 + ω2 − ω2

pe

c2

)
Êy = 0 . (6.36)

Since Êy �= 0 we conclude that the factor in parantheses must vanish, yielding

ω2 = ω2
pe + k2c2 . (6.37)

The same result is obtained from the last line of (6.35) because of the degeneracy.
The explicit form of the dispersion relation for the transverse wave becomes

ω =
(
ω2

pe + k2c2
)1/2

. (6.38)

Since we have k in x-direction and Ê in y-direction the vector product k × Ê
is nonzero and the induction law (6.10) gives an associated wave magnetic field.
Therefore, the transverse wave is an electromagnetic mode. When we consider the
limit of vanishing electron density, the electron plasma frequency goes to zero and
the wave dispersion takes the limiting form ω = kc, which is the light wave in
vacuum. The transverse mode in an unmagnetized plasma is therefore the light wave
modified by the presence of the plasma as a dielectric medium.

The wave dispersion of the electromagnetic wave is shown in Fig. 6.3. The
transverse wave is only propagating for ω > ωpe. Therefore, we call the electron
plasma frequency the cut-off frequency for the electromagnetic mode. In the limit
of very high frequencies the dispersion approaches the light wave in vacuum. This
case is different from the limit of vanishing plasma density because, with increasing

Fig. 6.3 Dispersion relation
for electromagnetic waves in
an unmagnetized plasma.
Wave propagation is only
possible for frequencies
larger than the plasma
frequency. For ω 
 ωpe the
wave dispersion approaches
the light wave in vacuum
ω = kc
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frequency, the electron inertia leads to a reduction of the electron current, ĵ ∝ ω−1,
so in the end the electron current has a vanishing influence on the wave.

A surprising result for the electromagnetic mode is the fact that the phase velocity

vϕ =
(
ω2

pe

k2
+ c2

)1/2

(6.39)

is higher than the speed of light This is not in conflict with Einstein’s theory of
relativity, because the phase is neither transporting energy nor information. Rather,
energy is transported at the group velocity

vgr = kc2

(
ω2

pe + k2c2
)1/2 , (6.40)

which is always smaller than the speed of light. Other examples for electromagnetic
waves with vϕ > c are found, e.g., for the wave propagation in microwave wave-
guides.

6.3.2 The Influence of Collisions

So far, we have assumed that the electron motion in the wave field is unaffected
by friction with the neutral gas. This approximation is certainly valid when the
wave frequency (for instance that of a laser beam) is much higher than the collision
frequency. This conjecture is supported by Newton’s equation in Fourier notation

m (−iω + νm) v̂ = q Ê , (6.41)

which shows that the resulting electron velocity can be decomposed into a real and
imaginary response factor w.r.t. the electric field

v̂ =
[

νm

ω2 + ν2
m

+ iω

ω2 + ν2
m

]
q

m
Ê . (6.42)

The in-phase response, which is due to the electron collisions, corresponds to the
action of a resistor. The imaginary part of the response represents a current that is
90◦ lagging behind the voltage. The lag is caused by the electron inertia, and this
part of the system behaves like an inductance.

We can use a simple trick to write down the dispersion relation with collisions by
noting that (6.41) becomes identical with the collisionless limit, when we rewrite it
in terms of an effective mass m∗

− iωm∗v̂ = q Ê, m∗ = m
(

1 + i
νm

ω

)
. (6.43)
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Hence, we only have to replace the real electron mass in the electron plasma fre-
quency by m∗

e . By doing so, we find a complex wavenumber for any given real
frequency. This is the proper approach to describe how a wave penetrates into a
plasma. The complex wavenumber then reads

k = 1

c

(
ω2 − ω2

pe

1 + i(νm/ω)

)1/2

. (6.44)

The resulting complex dispersion relation k(ω) is shown in Fig. 6.4. The real part of
the wavenumber gives the spatial phase evolution while the imaginary part describes
the damping of the wave amplitude. Note that the imaginary and real part of k inter-
sect at the plasma frequency. For wave frequencies below the plasma frequency, the
collisionality makes the plasma a resistive medium. This explains, why we can gen-
erate a plasma with radio frequency (e.g., at 13.56 MHz) even if the electron plasma
frequency is much higher. The collisionality gives the proper dissipation of wave
energy that leads to Joule heating of the electron gas. On the other hand, collisional
damping becomes negligible when ω > 2ωpe. Hence, a weakly collisional plasma
can still be analyzed in terms of its refractive index as long as the wave frequency is
sufficiently higher than the cut-off frequency.

Fig. 6.4 Complex dispersion
relation for electromagnetic
waves in a weakly collisional
νm/ωpe = 0.1 unmagnetized
plasma. The real part of the
wavenumber (solid line) is
dominant when ω > ωpe. The
imaginary part of the
wavenumber (dotted line)
shows that the wave can now
penetrate into the plasma for
frequencies ω < ωpe. The
dashed line again represents
the speed of light, which is
approached when ω 
 ωpe

6.4 Interferometry with Microwaves and Lasers

Because the unmagnetized plasma is an isotropic medium, its dielectric properties
are described by a dielectric constant rather than by a tensor

ε = 1 − ω2
pe/ω

2 . (6.45)
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The dielectric constant depends on the electron density and is a function of the wave
frequency ω. The refractive index N of this plasma is then determined by

N 2 = c2

v2
ϕ

= k2c2

ω2 = ε(ω) . (6.46)

Hence, by measuring the refractive index, e.g., by means of an interferometer, we
can deduce the electron density. For a collisionless plasma, the refractive index
N is smaller than unity and becomes zero at the electron plasma frequency and
imaginary for lower frequencies. In this way, an electromagnetic wave is reflected
at the surface of a plasma, when the wave frequency is lower than the electron
plasma frequency. This explains why a thin silver layer on a glass mirror, by means
of the free electrons of the silver atoms in the conduction band, can reflect visible
light but becomes transparent in the UV range. As discussed above in Sect. 6.3.2, a
weakly collisional plasma would allow wave penetration with an exponential decay
exp(−kIx) described by the imaginary part of k. (See also the discussion of the skin
effect in Sect. 11.3.1.

Instead of considering a given plasma with a fixed density for various wave fre-
quencies, we can also study a plasma with a density gradient and a wave with a fixed
frequency. Then the point where the local plasma frequency (which corresponds to
the electron density at that point) agrees with the wave frequency defines the cut-off
density nco. Likewise, we can consider a non-stationary plasma, which is switched
on at t = 0 and which, after a short while, reaches the cut-off density. Thus, the
cut-off density can be connected with an inhomogeneous plasma as well as with
the temporal evolution of plasma density, or both. Therefore, the crudest method of
plasma density diagnostics is to look, whether the plasma allows for wave transmis-
sion or not.

6.4.1 Mach-Zehnder Interferometer

A more elegant way, however, is the measurement of the refractive index with the aid
of an interferometer. This can be done, depending on plasma density, with coherent
radiation sources in the microwave, infrared or visible regime. A typical arrange-
ment for interferometry with microwaves or lasers is a Mach-Zehnder interferometer
(Fig. 6.5). The typical cut-off densities that correspond to the wave frequencies are
compiled in Table 6.1.

Interferometry is based on the phase difference between the wave that penetrates
the plasma and the reference wave, which takes a way of the same length in air.
This is practically accomplished by splitting the wave into two identical branches
and recombining the two on a detector where the two waves interfere. The optical
path through the plasma is the product of the geometrical length L and the refractive
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Fig. 6.5 (a) Laser interferometer in Mach-Zehnder arrangement, (b) microwave interferometer.
The optical arrangement uses partially-reflecting and fully-reflecting mirrors. The analog to a par-
tially reflecting mirror is the directional coupler for microwaves

Table 6.1 Cut-off densities for microwave and laser interferometers

Wavelength Frequency Cut-off-density
Source λ f nco(m−3)

Microwave 3 cm 10 GHz 1.2 × 1018

8 mm 37 GHz 1.7 × 1019

4 mm 75 GHz 7.0 × 1019

HCN-laser 337 μm 890 GHz 9.8 × 1021

CO2 laser 10.6 μm 28 THz 9.9 × 1024

He-Ne laser 3.39 μm 88 THz 9.7 × 1025

0.633 μm 474 THz 2.8 × 1027

index N . At a wavelength λ the difference between the optical path in the plasma
and the same path in vacuum is

Δϕ = 2π
(N − 1)L

λ
< 0 , (6.47)

where we have assumed that the plasma has a homogeneous density and a corre-
sponding constant refractive index. In an inhomogeneous plasma, the phase differ-
ence is

�ϕ = 2π

λ

∫
[N (x) − 1] dx . (6.48)

This means that interferometry can only determine the path-averaged refractive
index ¯N = (1/L)

∫
N (x)dx . The reduction to index profiles requires additional
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procedures like tomography. When the refractive index is not too close to zero, i.e.,
the plasma density not too close to the cut-off density, we can expand the refractive
index into a Taylor series

N =
√

1 − ω2
pe/ω

2 ≈ 1 − 1

2

ω2
pe

ω2 = 1 − 1

2

n

nco
, (6.49)

with the cut-off density

nco = ε0me ω
2

e2
. (6.50)

Then the phase shift can be written as

�ϕ ≈ −π
L

λ

n

nco
. (6.51)

Because the cut-off density decreases with λ−2, the phase shift becomes propor-
tional to the wavelength and not proportional to its inverse, as (6.51) might suggest
at first glance. For density diagnostics at low electron densities we therefore need
long-wavelength lasers or microwaves. The maximum wavelength, on the other
hand, is limited by the geometric optics approximation, which requires that the
plasma dimensions are large compared to the wavelength. This conflict limits the
achievable sensitivity of interferometers.

A practical example for interferometry in a time-varying plasma is shown in
Fig. 6.6a. The dynamic response of the detector circuit is too slow to resolve the
interferometer fringes during the build-up of the plasma by a strong current pulse.
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Fig. 6.6 (a) Interferogram in a pulsed gas discharge. (b) Reconstruction of the decaying electron
density by counting interferometer fringes
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During the current pulse the plasma density is much higher than the cut-off density.
About 600 μs after the end of the current pulse, the interferometer signal leaves
the cut-off regime and the signal oscillates about a mean value. One interferometer
fringe corresponds to a phase shift of 2π . Reading the maxima, minima and zero
crossings of the interferometer signal gives a resolution of a quarter fringe. These
give the data points in Fig. 6.6b, which are plotted on a logarithmic scale to demon-
strate the exponential decay of plasma density in the afterglow of this discharge. In
this evaluation, the data points close to the cut-off were evaluated with the exact
formula (6.48).

6.4.2 Folded Michelson Interferometer

The sensitivity of an interferometer can be improved in two ways: First, a different
type of interferometer should be used, such as the Michelson type, which has already
a two-fold passage of the beam. The sensitivity can be further enhanced by folding
the beam to a z-shape, which gives a six-fold passage, however at the expense of
spatial resolution. Such an improved laser interferometer [102] is shown in Fig. 6.7.
The laser wavelength (3.39 μm) is still in the transmission band of quartz windows.
A longer wavelength would require special materials for windows and optical com-
ponents.

Second, counting interferometer fringes gives only ≈ ±45◦ reading accuracy.
Therefore, the true phase angle should be measured with a more sensitive technique.
This can be achieved with quadrature detection, in which two independent interfer-
ograms with a sine wave and cosine wave in the reference branch are made. This
is technically realized by using a circularly polarized wave in the reference beam,
which is generated by a λ/8 plate that is traversed twice, and by splitting the two
interferometer signals by orthogonal polarizers.

M4M3

M5 M6 M7

λ/8

M8

M9 L2

L3 2xGe:Au
Detector

2xBRP

Plasma Tube

Reference Arm

BS L1 POL M2 M1
He-Ne 3.39µm

Fig. 6.7 Laser interferometer at λ = 3.39 μm with folded beams and quadrature detection. The
basic concept is a Michelson type interferometer. The λ/8 plate generates the circular polarization
after two passages. Separation of the two interference signals is achieved with total reflection at
the Brewster angle (from [102])
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6.4.3 The Second-Harmonic Interferometer

A special kind of two-wavelength interferometer is the second-harmonic interfer-
ometer, which was introduced by Hopf and coworkers [103–106]. This technique is
presently used, e.g., for the diagnostics of the Alcator C-mode tokamak [107, 108].
Second-harmonic interferometry has the advantage that probe and reference beam
take the same path, which reduces the sensitivity of the interferometer to mechanical
vibrations that affect conventional interferometers with a separate reference branch.
The original signal from a Nd:YAG laser at 1064 nm wavelength is used as the
probe beam (see Fig. 6.8). The frequency-doubled wave at 532 nm also traverses the
plasma but experiences a different phase shift. Behind the plasma the probe wave
is still strong and can be frequency doubled with a second crystal. The fundamental
wave is then blocked by a filter. Both waves at 532 nm produce interference fringes
on the detector.

Between the first and second doubler crystal, the fundamental laser wave at ω

experiences a phase shift ϕp(ω) by the plasma and ϕair(ω) in the air gaps

ϕp(ω) = ω

c

(
d − 1

2

n̄ede2

ω2ε0me

)
(6.52)

ϕair(ω) = ω

c
(D − d) . (6.53)

Behind the second doubler, the phase of the frequency doubled signal is

ϕ1(2ω) = 2
ω

c

(
D − 1

2
d

n̄e

ω2
a

)
, (6.54)

where a = e2(ε0me)
−1. The frequency-doubled signal has a total phase shift

between the doublers of

ϕ2(2ω) = 2ω

c

(
D − 1

2
d

n̄e

(2ω)2
a

)
. (6.55)

laser

doubler doubler

filter

detector

plasma

d

D

ω, 2ωω 2ω

Fig. 6.8 Principle of a second-harmonic interferometer. The beam of a Nd:YAG laser at the fun-
damental wavelength 1064 nm is frequency doubled with a LiB3O5 crystal. Both the fundamental
and frequency-doubled wave traverse the plasma. Behind the plasma the remaining fundamental
wave is doubled and the two signals at 532 nm wavelength interfere at the detector
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The phase difference of these two signals becomes

ϕ2(2ω) − ϕ1(2ω) = 3

2
d

n̄e

2ω
a . (6.56)

We see that the contribution from the air gap cancels when we neglect the different
refractive indices of air at the two wavelengths. The second-harmonic interferometer
is, by a factor of 1.5, more sensitive than a conventional interferometer operating at
the fundamental frequency ω.

6.4.4 Plasma-Filled Microwave Cavities

The refractive index of a plasma can also be used to detune the resonance frequency
of cylindrical microwave cavities. This is particularly useful at low electron densities
because the resonance frequency is very sensitive to a change in electron density. A
typical setup for this technique is shown in Fig. 6.9a. Suitable cavity modes for
detecting the resonance are the TM0m0 modes, which have an electric field aligned
with the z-axis of the cylinder. (See, e.g., [74] for microwave cavities and wave-
guides) This ensures that the electric field is homogeneous along the z-axis and
perpendicular to the top and bottom of the cylinder. Therefore, the eigenfrequencies
of the TM0m0 modes are independent of the resonator height. The radial bound-
ary condition at the cylinder radius, Ez(R) = 0, defines the eigenfrequency of the
cavity.

When the cavity is filled with a homogeneous dielectric material of dielectric
constant ε, the eigenfunctions have the shape

Ez(r) = Ê J0

(
χ0m

r√
εR

)
. (6.57)

Fig. 6.9 (a) Cylindrical
microwave cavity. The
electric field vectors of the
TM020 mode are indicated by
arrows. The cavity is filled
with a homogeneous plasma.
(b) Cylindrical cavity with a
plasma tube in the center. The
microwave signal is coupled
to the cavity with small loops
that excite an azimuthal
magnetic field
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The coefficients χ0m are the zeroes of the Bessel function J0 and distinguish the
various modes. The resonance frequencies are

fm = 1

2π

c√
εR

χ0m , (6.58)

which in the limit n � nco gives a linear relation between resonance frequency and
plasma density n

fm ≈ cχ0m

2π R

(
1 + 1

2

n

nco

)
. (6.59)

In this approximation, the cut-off density is determined by the frequency of the
empty cavity. The Q-factor ω/�ω of the cavity can be made very high, Q010 >

5000. This gives a density resolution �n ≈ nco/Q. An empty cavity with R =
100 mm has a fundamental resonance f1 = 1.15 GHz, which corresponds to a cut-
off density nco = 1.6 × 1016 m−3. Hence, densities as low as 1 × 1014 m−3 can
be accurately measured. Cavity detuning was, for instance, used to study the effect
of electron depletion in a dusty plasma [109]. The cavity method is also suitable
in connection with discharge tubes of radius a < R that fill only part of the cavity
[Fig. 6.9b]. Consequently, the sensitivity to the plasma density is reduced by roughly
a factor a/R.

6.5 Electrostatic Waves

After having discussed the transverse electromagnetic wave in an unmagnetized
plasma, we now return to the longitudinal mode with k||E. Longitudinal waves are
electrostatic as can be seen from Faraday’s induction law (6.10) because k × E = 0
and the wave magnetic field vanishes.

6.5.1 The Longitudinal Mode

We return here to the solutions of the wave (6.35). There, we had postponed the
discussion of the third mode, which is defined by Êx �= 0, Êy = Êz = 0. The first
row of the system of equations (6.35) reads

ω2

c2 ε(ω)Êx = 0 (6.60)

with ε(ω) given by (6.33). This implies that

ε(ω) = 0 , (6.61)
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which is the defining condition for the dispersion of an electrostatic wave. It further
implies that, in a cold plasma, this electrostatic wave only exists for ω = ωpe.
These are Langmuir’s plasma oscillations, in which the electrons oscillate about
their equilibrium at the electron plasma frequency. Although we have found a wave
solution, the dispersion relation turns out to be independent of k. This means that
the plasma oscillations cannot form propagating wave packets because the group
velocity is zero.

6.5.2 Bohm-Gross Waves

When we consider a warm electron gas, in which pressure forces have a similar
magnitude as the electric force, the Langmuir oscillations discussed above become
dispersive. The dispersion relation can be derived as follows: We start with adding
the pressure per particle to Newton’s equation in one space dimension, because the
electrostatic waves are one-dimensional

mv̇ = −q
dφ

dx
− γ

n

d(nkBT )

dx
. (6.62)

We have introduced the concept of adiabatic compression with an adiabatic expo-
nent γ = 3 (for one-dimensional motion) to take into account that the pressure
in the wave field changes on a rapid time scale. The velocity fluctuations can be
transformed into density fluctuations by using the equation of continuity

∂n

∂t
+ ∂

∂x
(nv) = 0 . (6.63)

First, we split the density and velocity into equilibrium part and fluctuating part,
n = n0 + n̂ exp[i(kx − ωt)], v = v0 + v̂ exp[i(kx − ωt)]. We further assume that
the electron gas is at rest, v0 = 0. The wave amplitudes n̂ and v̂ and the potential
fluctuation φ̂ are first-order quantities. Then, we replace the differential operators
by frequency and wavenumber according to the substitution rules (6.9). This gives
the equation of motion (6.62) as

− iωmv̂ = −ikqφ̂ − ikγ kBT n̂ . (6.64)

Likewise, the continuity equation takes the form

− iωn̂ + ikn0v̂ = 0 , (6.65)

which we use to substitute the velocity fluctuation by the corresponding density
fluctuation

v̂ = ω

k

n̂

n0
. (6.66)
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For eliminating the potential fluctuations, we use Poisson’s equation ∂2φ/∂x2 =
(q/ε0)(ne − ni) in Fourier notation, and insert the linearized electron density with
the result

− k2φ̂ = q

ε0
n̂ . (6.67)

Combining (6.64), (6.66) and (6.67), we obtain

ω =
(
ω2

pe + 3

2
k2v2

Te

)1/2

= ωpe

(
1 + 3k2λ2

De

)1/2
(6.68)

with the characteristic electron thermal speed vTe = (2kBTe/me)
1/2. This is the

dispersion relation for electron acoustic waves in a warm plasma, which were first
described by David Bohm (1917–1992) and Eugene P. Gross (1926–) [110, 111].

We will see in Sect. 9.3.3 that the electron acoustic waves experience damping
by kinetic effects (which are not contained in this fluid model) as soon as kλDe ≈ 1.
Therefore, weakly damped waves are only found in the long wavelength limit. The
dispersion relation is displayed in Fig. 9.8 of Sect. 9.3.2.

6.5.3 Ion-Acoustic Waves

When we allow that the ions can take part in the wave motion, there is a second
electrostatic wave in a plasma with warm electrons. This is possible for wave fre-
quencies much smaller than the electron plasma frequency. Note that the plasma
cut-off was a feature of the transverse electromagnetic mode and does not affect the
existence of low-frequency electrostatic modes.

When we consider low-frequency modes, the electron motion is only governed
by pressure forces and inertial forces can be neglected. On the other hand, we can
treat the ions as a fluid that is governed by the interplay of electric field force, ion
inertia and ion pressure. It is wise to allow for different equilibrium densities of
electrons and ions. While a two-component plasma of electrons and positive ions
has ne0 = ni0 because of quasineutrality, we will consider a more general case,
where the difference of the densities is caused by the presence of a third negative
species. These can either be negative ions or negatively charged dust.

The equation of motion for electrons and ions reads in Fourier notation

− iωmiv̂i = eÊ − ik

ni0
(γikBTi)n̂i (6.69)

0 = −eÊ − ik

ne0
(kBTe)n̂e . (6.70)
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Eliminating the ion velocity fluctuations by means of the continuity (6.66), we
obtain the density fluctuations of electrons and ions for a given wave field Ê as

n̂i = ek

−iω2mi + ik2γikBTi
Ê (6.71)

n̂e = −e

ikkBTe
Ê , (6.72)

where we have assumed that the electron gas experiences an isothermal compression
while the ion compression is adiabatic. This assumption is justified because the
electrons move across many wavelengths during one cycle of this low-frequency
wave, which justifies to consider the electron gas as a heat reservoir for the wave.
The latter aspect also justifies to neglect temperature fluctuations of the electrons.
The ions, on the other hand, are slow and do not move far from their starting position
during one wave period.

At last, Poisson’s equation becomes

ik Ê = e

ε0
(n̂i − n̂e) (6.73)

and defines the condition for the consistency of the fluctuating field with the space
charges. We then obtain

ik Ê =
(

ni0e2

ε0mi

)
k

−iω2 + ik2γikBTi/m i
Ê +

(
ne0e2

ε0kBTe

)
1

ik
Ê . (6.74)

Introducing the ion plasma frequency ωpi = (ni0e2/ε0mi)
1/2 and the electron Debye

length λDe = (ne0e2/ε0kBTe)
1/2, we find the following dielectric function

ε(k, ω) = 1 − ω2
pi

ω2 − k2γikBTi/mi
+ 1

k2λ2
De

. (6.75)

The dispersion relation of the electrostatic wave is again given by ε(k, ω) = 0 and
can be solved for ω2

ω2 = k2

(
γ ikBTi

mi
+ ω2

piλ
2
De

1 + k2λ2
De

)
. (6.76)

Here Cs = ωpiλDe is the ion sound speed and we call this wave mode the ion
acoustic wave.

In most gas discharge plasmas Te 
 Ti. In that limit the first term in the paren-
theses can be dropped and we find

ω ≈ k Cs√
1 + k2λ2

De

. (6.77)
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Fig. 6.10 Ion-acoustic wave
(solid line) and
dust-ion-acoustic wave
(dashed line). The acoustic
limits of the IAW and DIAW
dispersion are indicated by
dotted lines. The DIAW has
an increased phase velocity

For small wavenumbers (k2λ2
De � 1) this wave has acoustic dispersion ω = kCs

(see the asymptotes in Fig. 6.10). In the opposite case of large wavenumbers, the
wave frequency approaches ωpi.

In a plasma with ne0 �= ni0, the ion-sound speed can be rewritten as

Cs =
(

ni0kBTe

ne0mi

)1/2

. (6.78)

When ne0 = ni0, one is tempted to interpret the ion-acoustic wave as the interplay
of a pressure force associated with the electrons and an inertia residing in the ions,
as we have in ordinary sound waves in a neutral gas

cs =
(
γ p

ρ

)1/2

. (6.79)

This interpretation is obviously wrong, when we notice that the numerator in (6.78)
is ni0kBTe rather than ne0kBTe, as we would need for the electron pressure. The same
problem arises in the denominator with the ion mass density. Hence, the picture of
the mechanism behind the ion-acoustic wave must be revised. The apparent paradox
can be resolved by considering the electrons not as a gas that exerts a pressure but
rather as a fluid of the opposite charge that shields the electric repulsion between the
ions. Therefore, the phase velocity increases, when the electron density is reduced,
which means that the interaction between the ions is approaching their naked repul-
sion. This effect is well known from negative ion plasmas as can be read from the
increase of the phase velocity with increasing ratio n+/ne, see Fig. 6.10b. Likewise,
the ion-acoustic wave in a dusty plasma has a higher phase velocity than in the
absence of dust, see Fig. 6.10a.
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6.6 Waves in Magnetized Plasmas

In this Section, we will discuss the influence of a magnetic field on the propagation
of plasma waves. To avoid the entanglement of magnetic field effects and pressure
effects, we restrict the discussion to cold plasmas. This allows us to use the single
particle model. The starting point is again Newton’s equation of motion

∂v(α)

∂t
= qα

mα

(
E1 + v(α) × B0

)
α = e, i . (6.80)

Here, v(α) represents the velocity of particle oscillations, E1 the wave electric field
and B0 = (0, 0, B0) a static magnetic field. The oscillation velocity and the electric
field are considered as small quantities, so we will retain only linear terms contain-
ing these quantities. For the same reason we have neglected the wave magnetic field
B1 because it would form a second-order term v(α) × B1 in the Lorentz force.

6.6.1 The Dielectric Tensor

To reduce the cluttering with subscripts and superscripts, we drop the symbol α for
the particle species in the following and distinguish the particles by their q and m
values. The interesting new effects in the dielectric tensor arise from the particle
motion across the magnetic field

v̂x = i
q

ωm
(Êx + v̂y B0) , v̂y = i

q

ωm
(Êy − v̂x B0) . (6.81)

The ideal way to describe the gyromotion of the particles is using rotating vectors
for the velocities and the electric field

v̂± = v̂x ± iv̂y , Ê± = Êx ± iÊy . (6.82)

In this way we can decouple the particle motion in (6.81)

v̂± = i
q

ωm
(Ê± ∓ iv̂± B0) . (6.83)

The cyclotron frequencies for electrons and ions are defined as

ωce = eB0

me
ωci = |q|B0

mi
, (6.84)

which results in

v̂± = i
q

m
Ê± 1

ω ∓ sωc
. (6.85)
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Here, s = q/|q| is the sign of the particle charge. Transforming back to Cartesian
coordinates

v̂x = 1

2
(v̂+ + v̂−) , v̂y = 1

2i
(v̂+ − v̂−) , (6.86)

we obtain the matrix relation

⎛
⎝ v̂x

v̂y

v̂z

⎞
⎠ = i

q

ωm

⎛
⎜⎜⎜⎜⎝

ω2

ω2 − ω2
c

i
sωωc

ω2 − ω2
c

0

−i
sωωc

ω2 − ω2
c

ω2

ω2 − ω2
c

0

0 0 1

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎝ Êx

Êy

Êz

⎞
⎠ . (6.87)

In the last line of this matrix equation we have used the result from the unmagnetized
plasma. Using the definition of the particle oscillating current ĵ = ∑

α
nαqα v̂(α) we

obtain the conductivity tensor as

σ (ω) = iωε0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
α

ω2
pα

ω2 − ω2
cα

i
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω
0

−i
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω

∑
α

ω2
pα

ω2 − ω2
cα

0

0 0
∑
α

ω2
pα

ω2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.88)

and with the aid of (6.14) the dielectric tensor

ε(ω) =
⎛
⎝ S −iD 0

iD S 0
0 0 P

⎞
⎠ , (6.89)

in which we have used the parameters S, P , and D introduced by Thomas H. Stix
[100, 112]

S = 1 −
∑
α

ω2
pα

ω2 − ω2
cα

D =
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω

P = 1 −
∑
α

ω2
pα

ω2
. (6.90)
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Introducing further the refractive index N = kc/ω and the angle ψ between wave
vector and magnetic field direction, the wave (6.35) takes the form

⎛
⎝ S − N 2 cos2 ψ −iD N 2 cosψ sinψ

iD S − N 2 0
N 2 cosψ sinψ 0 P − N 2 sin2 ψ

⎞
⎠ ·

⎛
⎝ Êx

Êy

Êz

⎞
⎠ = 0 . (6.91)

Because of the rotational symmetry of the problem about the direction of the
magnetic field, we could arbitrarily choose the wave vector in the x-z plane,
k = (k sinψ, 0, k cosψ). Equation (6.91) is now defining the refractive index
N (ω, k, ψ), which we will start discussing for the principal directions ψ = 0
and ψ = π/2.

6.6.2 Circularly Polarized Modes and the Faraday Effect

We begin with studying the wave propagation along the magnetic field (ψ = 0).
Then the wave equation has the particular form

⎛
⎝ S − N 2 −iD 0

iD S − N 2 0
0 0 P

⎞
⎠ ·

⎛
⎝ Êx

Êy

Êz

⎞
⎠ = 0 . (6.92)

Here, we have to distinguish two cases:

1. Êx = Êy = 0 und Êz �= 0. This is a longitudinal wave that is described by
the dispersion relation P = 1 − (ω2

pe + ω2
pi)/ω

2 = 0. In fact, we find the
plasma oscillations again, which appeared in the unmagnetized case. Obviously,
the magnetic field has no effect on the wave because the oscillations are aligned
with the magnetic field and the Lorentz force vanishes.

2. Êx �= 0 �= Êy und Êz = 0. In this case we have transverse electromagnetic
waves that are described by a 2 × 2 system of equations

(
S − N 2 −iD

−iD S − N 2

)
·
(

Êx

Êy

)
= 0 . (6.93)

Introducing again the rotating electric field Ê± with (6.82)—this corresponds to a
circular polarization of the wave—the two equations are decoupled:

(S − D − N 2)Ê+ + (S + D − N 2)Ê− = 0 . (6.94)

When Ê+ �= 0 und Ê− = 0, we have a left-handed circularly polarized wave
(L-wave) with a refractive index NL = √

S − D. In the other case, Ê+ = 0 und
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Ê− �= 0, the wave is a right-handed circularly polarized (R-mode), and the refrac-
tive index is NR = √

S + D.
Using the definitions of the parameters S and D we obtain

NR =
(

1 − ω2
pe

ω(ω − ωce)
− ω2

pi

ω(ω + ωci)

)1/2

(6.95)

NL =
(

1 − ω2
pe

ω(ω + ωce)
− ω2

pi

ω(ω − ωci)

)1/2

. (6.96)

For ω = ωce the refractive index of the R-mode approaches NR → ∞. The R-
mode is said to have a resonance at the electron cyclotron frequency. This resonance
becomes immediately evident when we see that the sense of rotation of the wave
vector and the electron are the same (Fig. 6.11). In the rotating frame of reference the
electron experiences a DC electric field and can gain energy indefinitely. The same
consideration applies to the L-mode, which has a resonance at the ion cyclotron
frequency.

Fig. 6.11 The sense of
rotation for the R-mode and
L-mode compared to the
gyromotion of electrons and
positive ions

E–= ER E+= EL

B

Fig. 6.12 The square of the refractive index for wave propagation along the magnetic field as a
function of frequency. For clarity, an artificial mass ratio me/mi = 0.4 was chosen. The R-mode
has a resonance, N 2 → ∞, at the electron cyclotron frequency whereas the L-wave shows a
resonance at (the lower) ion cyclotron frequency. In the high density limit ω2

pe 
 ω2
ce considered

here, only the R-wave is propagating between ion and electron cyclotron frequency while the L-
wave is in the cut-off, N 2 < 0
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The refractive index as a function of wave frequency determines the regimes
where the R-mode and L-mode are either propagating or in the cut-off. In Fig. 6.12
the existence regimes are given for an artificial mass ratio of me/mi = 0.4 to
reduce the difference between ion and electron cyclotron frequency. Just above their
respective cyclotron frequencies, the L-wave and the R-wave are in a cut-off band,
N 2 < 0, until they reach a propagating band beyond the cut-off frequency. At the
highest frequencies, both refractive indices approach N = 1.

6.6.2.1 Faraday Rotation

The small difference between NR and NL at high frequencies gives rise to the
Faraday effect, namely the plane of polarization of a linearly polarized electromag-
netic wave that propagates along the magnetic field line is rotated about the field.

A linearly-polarized transverse wave propagating along the magnetic field can be
decomposed into a pair of R- and L-mode. Using circular coordinates and noting
that i = exp (iπ/2), we find for the electric field components E±

E± = Ê
2

(
exp[i(k±z − ωt)]

exp[i(k±z ∓ π

2
− ωt)]

)
, (6.97)

where k± are the wavenumbers of the R- and L-mode. The electric field pattern then
becomes

E(z) = E+(z) + E−(z) = Ê exp[i(k̄z − ωt)]
(

cos(δk z)
sin(δk z)

)
. (6.98)

Here, k̄ = 1
2 (k+ + k−) and δk = 1

2 (k+ − k−). The plane of polarization, which, at
z = 0, was aligned with the x-axis, is obviously rotating at a rate α(z) = δk z about
the magnetic field direction. This is the Faraday effect in a medium with circular
bi-refringence. In the high frequency limit ω 
 (ωpe, ωce) we have

N± ≈ 1 − ω2
pe

2ω(ω ± ωce)
. (6.99)

This gives a rotation of the plane of polarization

α(L) ≈ ω2
peωceL

2c ω2
, (6.100)

which is proportional to the product of the plasma density (∝ ω2
pe), magnetic field

(∝ ωce) and path length L . In an inhomogeneous medium, the local product of
density and magnetic field has to be integrated along the ray path.

Faraday rotation is a standard technique to study galactic magnetic fields (e.g.,
[113]). The magnetic structure of the solar corona was investigated with back-
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illumination by a satellite-borne transmitter [114] or by polarized radiation from
natural radio-sources [115]. In the ionospheric plasma, modern techniques com-
prise Faraday rotation imaging with multiple satellites [116] or polarization analysis
of coherent radar backscatter [117]. In fusion devices, polarimetry with many ray
paths, after its demonstration in the TEXTOR device [118], is now a well established
method, which is capable of measuring the poloidal component of the magnetic
field. From the sensitivity point of view, see (6.51), long wavelengths in the far
infrared are preferred [119]. Such far-infrared wavelengths were also applied in a
reversed field pinch [120, 121] or in the Compact Helical System [122].

6.6.2.2 Example: Occultation of Radio Sources

A typical example for studying the magnetic field in the solar corona by means of
Faraday rotation is shown in Fig. 6.13a. Here, the rotation measure RM = α(L)λ−2

for different radio sources near the ecliptic is determined with a radio telescope
while the sun and its corona pass by different sources at various distances [115].
Because the rotation measure gives only the line-averaged product of electron den-
sity and parallel magnetic field, a model for the density distribution and the coronal
magnetic field is used to predict the magnitude of the effect. The comparison of mea-
surement and expectation is shown in Fig. 6.13b. A similar technique was applied
with radio transmitters aboard solar orbiting satellites (e.g., [123]).
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Fig. 6.13 Measuring the magnetic field in the solar solar corona by means of Faraday rotation. (a)
Ecliptic with positions of the sun relative to radio sources. (b) Resulting rotation measure compared
to model prediction. (Reproduced from [115] by permission of the AAS)

6.6.2.3 Whistler Waves

In most parts of the ionosphere and plasmasphere the plasma density is high enough
to establish ω2

pe 
 ω2
ce. Therefore, the R-mode is the only propagating mode in the

frequency range between ion cyclotron frequency and electron frequency, as can be
seen in Fig. 6.12.

A lightning event in the southern hemisphere triggers a wave pulse that is dis-
persed into a low frequency (ω2 � ω2

ce) wave train while it propagates along a
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magnetic field line according to the refractive index NR ≈ ωpe/
√
ωωce. The group

delay time for these low-frequency wave packets becomes Tg ∝ ω−1/2. For an
observer in the northern hemisphere, this gives an electric wave field in the audible
range with a slowly decaying pitch, which explains the name Whistler wave for
this phenomenon [124]. This effect can be visualized in a sonogram, in which the
instantaneous frequency of the signal is plotted vs. time, see Fig. 6.14b. The analysis
of the sonogram shows that the decaying pitch follows the t ∝ ω−1/2 law and that
the subsequent weaker echo has the same origin and, because its time scale is three
times longer, represents a signal that has bounced three times between southern and
northern hemisphere. The example is event c09m04 from Stephen Mc Greevy’s VLF
recordings.1

Fig. 6.14 (a) A lightning between cloud and ionosphere in the southern hemisphere triggers a
Whistler wave that travels along the magnetic field. (b) Sonogram of whistler wave events in the
northern hemisphere. The strong whistler starting at 4 s is followed by a weak echo of much larger
dispersion. (c) The evaluation shows that the first is a one-hop Whistler and the second a three-hop
Whistler. Both signals follow a f −1/2 law, which extrapolates to a common starting point

6.6.3 Propagation Across the Magnetic Field

We now turn to wave propagation across the magnetic field (ψ = π/2). This still
leaves the polarization of the wave open, which can be parallel to the magnetic field,
or perpendicular, or at any angle in between. When the electric field vector is aligned
with the static magnetic field, the wave is called the ordinary mode or O-mode. The
refractive index for the O-mode is not affected by the magnetic field, because the
ion and electron motion is purely along the magnetic field, and is given by (6.46)
and (6.45). This is why the mode is called ordinary. The ordinary mode is used, e.g.,
for interferometry in magnetized plasmas, where it is a suitable density diagnostics.

1 http://www-pw.physics.uiowa.edu/mcgreevy/
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The extraordinary mode or X-mode has E ⊥ B0 and is described by the 2 × 2
system of equations

(
S −iD

iD (S − N 2)

)
·
(

Êx

Êy

)
= 0 . (6.101)

Again, non-vanishing solutions for E are found when the determinant of the matrix
becomes zero, yielding a refractive index given by

NX =
(

S2 − D2

S

)1/2

. (6.102)

Resonances appear when the Stix parameter S vanishes (S = 0). In the case of very
high frequencies, we can neglect the ion contributions in S, and find the so-called
upper-hybrid resonance frequency

ωuh = (ω2
ce + ω2

pe)
1/2 . (6.103)

For intermediate frequencies, there is a second zero of S, which defines the lower
hybrid resonance frequency

ωlh =
(
ω2

ci + ω2
piω

2
ce

ω2
pe + ω2

ce

)1/2

. (6.104)

In the limit of high electron density, ω2
pe 
 ω2

ce, the lower hybrid frequency becomes

ωlh ≈ (ωciωce)
1/2 The behavior of the refractive index for the X-mode and O-mode

as a function of wave frequency is shown in Fig. 6.15.

Fig. 6.15 The square of the
refractive index for wave
propagation perpendicular to
the magnetic field as a
function of frequency. An
artificial mass ratio
me/mi = 0.4 is chosen. The
X-mode has resonances at the
lower hybrid frequency ωlh
and the upper hybrid
frequency ωuh
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The X-mode is propagating at frequencies below the hybrid resonances. At the
hybrid frequencies, N 2 changes sign and the wave propagation is cut-off. The O-
mode cut-off occurs at the electron plasma frequency. For very high frequencies the
refractive index of both modes approaches unity.

6.6.3.1 Ionosondes

Vertical sounding of the ionosphere is a standard technique to study the electron
density profile in the lower ionosphere, which is characterized by different layers.

Nowadays, ground-based (digital) ionosondes [125] are used, which emit wave
bursts at various frequencies and determine the height of the reflective layer for each
particular frequency from the echo delay time. The sonograms in Fig. 6.16 show
the echoes from the O-mode and X-mode as well as multiple reflections between
ionosphere and ground. These examples show times, where only the F-layer was
present. After sunset, the E-layer rapidly disappears by recombination.

The night-time ionogram (taken on day 109 of 1993 at 04:00 h LT over Shri-
harikota, India), where the electron cyclotron frequency is fce = 980 kHz, shows
an O-mode cut-off at 4.5 MHz, which corresponds to an electron density of 2.5 ×
1011 m−3 (Fig. 6.16a). The X-mode cut-off is found at 4.8 MHz (its expected
value from (6.103) is 5.0 MHz). According to the higher electron density in the
evening ionosphere, the O-mode and X-mode cut-offs shift to higher frequencies
(Fig. 6.16b). The maximum electron density at 21:00 h local time for the same loca-
tion reaches 1.6 × 1012 m−3.

The time delay for a particular reflection is commonly expressed in terms of the
virtual height h′ = cT/2, in which the refractive index of the plasma is not yet
corrected. The density profile results from the reflection condition at the O-mode
(X-mode) cut-off and the traversed part of the plasma up to the cut-off is used
to convert the virtual height to the real height of the reflecting layer. There are

Fig. 6.16 (a) Typical
night-time ionogram in the
equatorial ionosphere. There
appear two-pass and
three-pass reflections
between ground and
ionosphere. The splitting into
O-mode and X-mode is
clearly visible. (b) Typical
evening ionogram with a
much higher plasma density
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analytical methods [126] and computer programs [127, 128] available for this eval-
uation. A survey of this technique can be found in [129]. Ionosondes have recently
been applied in the equatorial ionosphere [130] to study the Equatorial Spread-F
phenomenon, at mid-latitude [131] for investigating sporadic E-events or to study
plasma drift effects at the southern polar cap [132].

6.7 Resonance Cones

So far, the discussion was restricted to the principal wave modes, which propagate
at θ = 0◦ or θ = 90◦ and possess resonances either at the cyclotron frequencies
or at the hybrid frequencies. For oblique wave propagation, there is a so-called
lower oblique resonance, which occurs for ω < min(ωpe, ωce) in the Whistler wave
regime. In a cold plasma, the resonance angle is given by [133, 134]

sin2(θc) = ω2(ω2
pe + ω2

ce − ω2)

ω2
peω

2
ce

. (6.105)

When the wave is excited with a small antenna (which can be the protruding inner
conductor of a rigid coaxial cable), the resonance is found on the surface of a (dou-
ble) cone of opening angle θc, which is aligned with the magnetic field direction and
has its apex at the antenna, see Fig. 6.17a.

The resonance angle θc is a function of the electron density and can be used
as a diagnostic method. The resonance angle is easily found by moving a receiver
antenna around the transmitting antenna. For low plasma density (ω2

pe � ω2
ce) and

for ω2 � ω2
pe (6.105) takes the limiting form

sin(θc) ≈ ω

ωpe
. (6.106)

A typical resonance curve with two pronounced maxima is shown in Fig. 6.17b.
The dependence of the resonance angle on the transmitter frequency is shown in

Fig. 6.17 (a) Geometry for recording a resonance cone in the laboratory. (b) Two resonance max-
ima at the intersection with the resonance cone. (c) Dependence of resonance angle on exciter
frequency and plasma density (from [135])
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Fig. 6.17c for three different values of the rf power that generates the plasma.
Theoretical curves from (6.106), with ωpe as fit-parameter, closely match the mea-
sured resonance angle. From this fit the electron density is obtained.

The resonance cone method was used for diagnostic purposes on sounding rock-
ets in the ionosphere [136–139], for kinetic and non-thermal effects in laboratory
plasmas [140–142], and in dusty plasmas [135].

The Basics in a Nutshell

• In Fourier notation, Maxwell’s equations become:

Induction law ik × Ê = iωB̂

Ampere’s law ik × B̂ = −iωε0μ0Ê + μ0ĵ0

Poisson’s law ik · Ê = ρ̂/ε0

no longitudinal B̂ ik · B̂ = 0 .

• The wave equation: {kk − k2 I + ω2

c2 εω} · Ê = 0.
• The phase and group velocities are defined as vϕ = ω/k, vg = dω/ dk.
• Transverse electromagnetic waves in an unmagnetized plasma have the

refractive index N = ε(ω) = (1 − ω2
pe/ω

2)1/2. They exist only above
a cut-off frequency, ω > ωpe.

• The transverse mode is used for plasma interferometry to determine the
plasma density. The phase shift of an interferometer is proportional to the
product ne Lλ.

• The dispersion of an electrostatic wave in an unmagnetized plasma is deter-
mined by ε(ω) = 0.

• Electrostatic waves have k||Ê and are found in two frequency regimes:
Bohm-Gross modes for ω > ωpe and ion-acoustic waves for ω < ωpi. The
ion-acoustic speed is Cs = (kBTe/m i)

1/2.
• In magnetized plasma, the fundamental modes for propagation along the

magnetic field line have circular polarization. The refractive index of the R-
wave and L-wave are different. This leads to Faraday rotation of a linearly
polarized wave. The R-wave (L-wave) has a resonance at the electron (ion)
cyclotron frequency.

• Resonances correspond to N 2 → ∞, cut-offs to N 2 → 0.
• Waves propagating perpendicular to a magnetic field are the O-mode

(E||B0), which is unaffected by the magnetic field, and the X-mode, which
has resonances at the upper hybrid frequency ωuh = (ω2

pe + ω2
ce)

1/2 and

lower hybrid frequency ωlh ≈ (ωceωci)
1/2.



Problems 167

Problems

6.1 In the limit Ti � Te the ion-acoustic wave has the dispersion relation

ω(k) = ωpiλDe k

(1 + k2λ2
De)

1/2

(a) Derive an expression for the phase velocity vϕ(k) and group velocity vg(k) as a
function of the wave number k.

(b) Discuss the result with respect to “acoustic behavior” at kλDe � 1.

6.2 Assume that in a dielectric medium the relation vϕ · vg = c2 holds. What is the
general shape of the dispersion relation ω(k) for this case?

6.3 (a) Show that for ω2
pe 
 ω2

ce 
 ω2 the refractive index for Whistler waves takes
the limiting form

N = ωpe

(ωωce)1/2

(b) Calculate phase and group velocity and show that vgr = 2vϕ .

6.4 Determine the minimum plasma density at which a He-Ne Laser at λ = 633 nm
wavelength will be reflected.

6.5 Consider an electron-positron plasma with ne = np. What is the cut-off fre-
quency for electromagnetic waves in this system?

6.6 The plasma of the ionospheric F-layer has a density ne ≈ 2 × 1012 m−3. The
typical magnetic field at mid-latitude is B = 50 μT. Calculate the electron plasma
frequency fpe, electron cyclotron frequency fce and the upper hybrid frequency fuh.

6.7 Prove that vϕ = vgr requires ω = vϕ k.



Chapter 7
Plasma Boundaries

What I tell you three times is true.

Lewis Carroll, The Hunting of the Snark

A plasma separates itself from metallic or dielectric surfaces by forming a boundary
layer, which appears darker than the bulk plasma itself. This is a first hint that the
boundary layer is depleted of electrons that are needed to excite the neutral atoms
producing the glow of an electric discharge. It was Langmuir who identified these
dark spaces as regions that are not electrically neutral but are governed by a net
(positive) space charge. The particle motion is determined by physical mechanisms
that are different from those discussed for the quasineutral part of the plasma. The
interaction of an ion with the electric field from the space charge of all the other
ions is a new type of many-body interaction that is characteristic for the collective
behavior of a plasma.

7.1 The Space-Charge Sheath

Let us consider the situation of a plasma that is in contact with a plane conducting
wall located at x = 0 (Fig. 7.1) and fills the half-space x < 0. Because of the action
of Debye shielding, we can expect that beyond a certain position x = −d from the
wall the plasma particles will have established quasineutrality. We call the region
−d < x < 0, in which a significant deviation from quasineutrality is allowed,
the space charge sheath or simply the sheath. The position x = −d is named the
sheath edge. It is further assumed that the ion motion in the sheath is collisionless,
i.e., λmfp 
 d.

Because the thermal velocity of the electrons is much higher than that of the ions,
an initially uncharged wall will be hit more often by electrons than by ions, which
accumulates a net negative surface charge on the wall and makes the wall potential
negative with respect to the electric potential inside the quasineutral plasma. For the
moment, we assume that the wall is electrically floating and that the charges are
not flowing away in an external circuit. When the wall potential becomes negative,
the number of electrons that can reach the wall diminishes until an equilibrium is
reached, in which the residual electron flux to the wall equals the ion flux, and the
net charge on the wall reaches an equilibrium value, the floating potential.

A. Piel, Plasma Physics, DOI 10.1007/978-3-642-10491-6_7,
C© Springer-Verlag Berlin Heidelberg 2010
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Fig. 7.1 Geometry of the
plasma-wall boundary layer.
A space charge sheath of
thickness d with ne < ni is
formed at the wall. The
matching between sheath and
bulk plasma occurs in a
quasi-neutral presheath of a
size comparable to the ion
mean free path λ
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This simple picture gives us an impression why all isolated bodies inside a plasma
charge up negatively. This applies to the fine metal wires which Langmuir intro-
duced as probes into the plasma, to satellites in the Earth’s plasmasphere, or to dust
particles in a plasma. Of course, the real situation is more complex because we will
see that the ion flux to a negative body (except for the very first moment) is not
determined by the ion thermal velocity. Moreover, we may have neglected other
processes that lead to charging. In the case of satellites, these processes are pho-
toemission from solar UV-radiation or secondary emission by impact of energetic
particles. We will discuss these effects in Sect. 10.1.

For completeness, we introduce a transition layer adjacent to the sheath, called
the presheath, that matches the conditions between the space charge sheath and the
unpertubed plasma. The presheath will be quasineutral, but the densities of electrons
and ions will depend on position, and the ion drift velocity will be non-zero. This
transition region has a thickness of roughly one ion mean free path.

7.2 The Child-Langmuir Law

Here, we consider a situation, where a potential difference between the wall at Φ(0)
and the sheath edge at Φ(−d) is determined by an external voltage applied to the
wall. We are mostly interested in cases where this potential difference creates a
high potential barrier for thermal electrons |Φ(0) − Φ(−d)| 
 kBTe/e. Then the
Boltzmann factor for the electron gas,

ne(x) = ne(−d) exp

{
e[Φ(x) − Φ(−d)]

kBTe

}
, (7.1)

ensures that only few electrons can overcome the barrier, and that a significant
number of electrons is only found close to the sheath edge. In other words, for
large negative voltages applied to the wall, most of the sheath will be a pure ion
sheath. For simplicity of the calculation, we will completely ignore the electron
space charge for the moment.
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The ion motion inside the sheath will be discussed here only for the collisionless
sheath, d � λmfp. Then, the ion velocity ui (x) is determined by energy conservation

1

2
miu

2
i (x) + eΦ(x) = 1

2
miu

2
i (−d) + eΦ(−d) (7.2)

assuming an initial velocity ui (−d) = u0. Then, setting Φ(−d) = 0, we obtain

ui(x) =
[

u2
0 − 2eΦ(x)

mi

]1/2

. (7.3)

In the following, we are interested to describe a steady-state solution for the ion
flow towards the wall. In the absence of ionisation or recombination, the continuity
equation reads

ni(x)ui(x) = ni(−d)u0. (7.4)

Hence, the acceleration of ions leads to a reduction of ion density

ni(x) = ni(−d)

[
1 − 2eΦ(x)

miu2
0

]−1/2

. (7.5)

This ion density must be used to determine the self-consistent electric poten-
tial distribution Φ(x). Therefore, potential and ion density must fulfill Poissons’
equation

Φ ′′ ≈ −eni(−d)

ε0

(
−2eΦ(x)

miu2
0

)−1/2

, (7.6)

where we have used e|Φ(x)| 
 m iu2
0/2, i.e., stating that the initial energy of the

ion is small compared to the energy gained by free fall in the sheath potential. The
classical solution of this problem according to Langmuir starts by multiplying both
sides of Eq. (7.6) by Φ ′ and integrating from x = −d to x = 0,

1

2

[
Φ ′2(x) − Φ ′2(−d)

]
= eni(−d)u0

ε0

(
2mi

e

)1/2

×
{
[−Φ(x)]1/2 − [−Φ(−d)]1/2

}
. (7.7)

We can neglect Φ ′2(−d) compared to Φ ′2(x), because the electric field at the sheath
edge is small compared to that inside the sheath. By definition, Φ(−d) = 0. Noting
that eni(−d)u0 = ji is the (constant) ion current density inside the sheath, we have
to perform a second integration of the equation
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Φ ′(x) = 2
(mi

2e

)1/4
(

ji
ε0

)1/2

[−Φ(x)]1/4 , (7.8)

which can be done by separation of the variables and leads to

4

3
Φ3/4 = 2

(mi

2e

)1/4
(

ji
ε0

)1/2

(x + d) . (7.9)

This result defines the potential distribution in a space charge sheath

Φ(x) =
(

3

2

)4/3 (mi

2e

)1/3
(

ji
ε0

)2/3

(x + d)4/3 , (7.10)

and gives a relation between the total voltage drop U = Φ(−d) − Φ(0), the ion
current density ji and the sheath thickness d:

U 3/2 = 9

4

(m i

2e

)1/2
(

ji
ε0

)
d2 . (7.11)

Solving for the current density, we obtain the famous Child-Langmuir law, [143,
144]

ji = 4

9
ε0

(
2e

mi

)1/2 U 3/2

d2
, (7.12)

which was originally formulated for the space-charge limited electron flow in a
vacuum diode.

In a vacuum diode, the separation d between cathode and anode is fixed and the
Child-Langmuir law defines the volt-ampere characteristic of the diode. In a plasma
sheath, the voltage drop is fixed and we will see below that the ion current is also
defined by the properties of the unperturbed plasma. Hence, the plasma sheath reacts
by adjusting the sheath thickness d to fulfill the constraints by space-charge limited
flow described by the Child-Langmuir law.

7.3 The Bohm Criterion

The matching of a space charge sheath with a plasma raises the question, why such
a huge violation of quasi-neutrality does not set up a large-amplitude ion acoustic
wave, by which the charge perturbation could propagate into the plasma bulk. So,
what mechanism holds the space charge from spreading into the plasma? Obviously,
we are asking for the stability of the plasma-sheath boundary. Under which condi-
tions tends a neutral plasma to develop a charge imbalance? Such a question cannot
be answered by the steady-state considerations of the previous Section. Rather, we
must use more general concepts, e.g., those for mechanical stability.
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7.3.1 Stability Analysis

Consider the equilibria of a point mass in the mechanical potentials shown in
Fig. 7.2. In situation (a), the point mass attains a stable equilibrium at the minimum
of the potential well. The potential well exerts a restoring force, when the mass is
displaced from the minimum. The stable “trajectory” of the point mass is a dull
function, x(t) = 0. In situation (b), the mass sits on top of a potential hill (think
of an inverted pendulum). Any displacement from the maximum position leads to a
force that drives the point mass further away from its initial equilibrium. Therefore,
the equilibrium is unstable and the point mass follows a non-trivial trajectory x(t).
Obviously, the sign of the second derivative of the mechanical potential determines
whether the equilibrium is stable or unstable.

The equation of motion for a point mass m in a mechanical potential V (x)

m
d2x

dt2
= −dV

dx
(7.13)

determines the trajectory x(t) of the particle after it has experienced its first small
displacement from the equilibrium position. What has this to do with our problem of
the development of a space charge sheath? Consider the general shape of Poisson’s
equation

d2Φ

dx2 = f (Φ) = −d�

dΦ
, (7.14)

in which the r.h.s. is a function of Φ that can be interpreted as being the derivative of
a so-called pseudopotential � (also known as classical potential or Sagdeev poten-
tial). This problem becomes mathematically equivalent to the mechanical problem
when we make the identifications listed in Table 7.1.

Fig. 7.2 (a) Stable
mechanical equilibrium,
V ′′(0) > 0. (b) Unstable
mechanical equilibrium,
V ′′(0) < 0

a) b)

x x

V(x) V(x)

Table 7.1 Analogy between mechanical stability and sheath stability

Mechanical stability Sheath stability

Particle trajectory x(t) Electric potential distribution Φ(x)
Time t Space coordinate x
Mechanical potential V (x) Pseudopotential �(Φ)



174 7 Plasma Boundaries

7.3.2 The Bohm Criterion Imposed by the Sheath

Our remaining task is to calculate the pseudopotential and to determine its second
derivative d2�/dΦ2, which has to be negative at the point of equilibrium to allow
a plasma to develop a space charge sheath. When it is positive, the plasma remains
neutral, which corresponds to the case in which the point mass rests in its stable
minimum position.

Instead of calculating the second derivative of the pseudopotential, we can sim-
ply calculate the first derivate of the space-charge function, −d f (Φ)/dΦ. For this
calculation it is essential to retain the electron space charge at the sheath edge given
by (7.1). Hence, we have

f (Φ) = ene(−d)

ε0

⎡
⎣exp

(
eΦ

kBTe

)
−

(
1 − 2eΦ

miu2
0

)−1/2
⎤
⎦ (7.15)

and finally

− d f

dΦ

∣∣∣∣
Φ=0

= e

kBTe
− e

miu2
0

≤ 0 . (7.16)

This gives the Bohm-criterion, named after the U.S.-born British physicist David
Bohm (1917–1992), for the formation of a space charge sheath

u0 ≥ vB =
(

kBTe

mi

)1/2

. (7.17)

Hence, the speed of the ions at the sheath edge must be equal to or exceed the Bohm
velocity vB, which is obviously identical with the ion sound speed. We can also
define a Mach number

M = u0

vB
(7.18)

and rewrite the Bohm condition as M ≥ 1, i.e., the ion flow has to be supersonic.
Therefore, the original question, why the space charge layer does not simply

expand into a plasma by means of an ion acoustic wave can be answered as follows:
The plasma in the presheath is not at rest. Rather, there is a mass motion with ion
sound speed, or faster, into the sheath. An ion sound wave in this medium would
be stationary in the laboratory frame of reference or would be swept back into the
sheath. Hence, the Bohm criterion represents a sound barrier for the propagation
of information from the sheath into the plasma. In this language of information, the
plasma “does not know” about the presence of a space charge sheath.
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7.3.3 The Bohm Criterion as Seen from the Presheath

The inequality in the Bohm criterion leaves a non-satisfying aspect. Why should
Mother Nature allow for a wide range of possible entrance speeds u0 into the sheath
while she is choosing the most economic solutions elsewhere?

The answer is connected to the observation that a directed ion motion at the
sheath edge requires an electric field in the presheath that accelerates the ions to the
Bohm speed (or more). On the other hand, the presheath should be considered as
quasineutral. Hence, the electron and ion density are nearly equal and therefore the
ion density is determined by the electron Boltzmann factor

ni(x) = ne(x) = ne0 exp

[
eΦ(x)

kBTe

]
, (7.19)

with ne0 being the electron density in the unperturbed plasma and Φ(x) the electric
potential in the presheath. The ion motion in the presheath is affected by ion-neutral
collisions at a collision frequency νmi for momentum loss. In steady state, the mean
ion motion is therefore described by the equation

m ivi
dvi

dx
+ miνmivi = −e

dΦ

dx
, (7.20)

in which the acceleration of the ion flow is described by the convective derivative
v(dvi/dx). We can eliminate the electric field E = −dΦ/dx from the ion equation
of motion by rearranging (7.19) as

Φ = kBTe

e
ln

(
ni

ni0

)
. (7.21)

Noting the continuity of the ion flow, nivi = const., we easily obtain

dΦ

dx
= −kBTe

e

1

vi

dvi

dx
. (7.22)

Inserting this expression in (7.20) we have

dvi

dx
= νmiv

2
i

v2
B − v2

i

(7.23)

For all subsonic velocities, vi ≤ vB, the ion acceleration is positive. However, when
the Bohm velocity is approached, the acceleration becomes singular. This singu-
larity is also found in the electric field E . The appearance of a singularity in the
electric field is the defining property for the position of the sheath edge because this
singularity is a consequence of the constraint from assuming strict quasineutrality
in the presheath.
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In conclusion, the ion motion in a quasineutral presheath requires that vi ≤ vB.
Hence, this is a second Bohm criterion, which follows from the conditions on the
presheath side of the sheath edge, while the condition on the sheath side required
vi ≥ vB. Therefore, the complete Bohm criterion for the ion speed at the sheath
edge can only be fulfilled by a unique velocity, the Bohm velocity,

vi(−d) = vB , (7.24)

or, in other words, the Mach number has to be M = 1.
Does the singularity in the electric field mean that there is also a singularity in

the electric potential? The answer is no. On its way from the plasma bulk through
the presheath, an ion has gained the kinetic energy 1

2 miv
2
B = 1

2 kBTe. Neglecting the
energy dissipated in ion-neutral collisions, the potential at the sheath edge can be
estimated from energy conservation as

Φ(−d) ≈ −1

2

kBTe

e
. (7.25)

Accordingly, the plasma density at the sheath edge is reduced to

ni(−d) = ne(−d) = ne0 exp

(
−1

2

)
≈ 0.61 ne0 . (7.26)

7.4 The Plane Langmuir Probe

In 1925, Mott-Smith and Langmuir [145] had introduced small additional electrodes
into a plasma and studied its volt-ampere characteristic. These Langmuir probes are
widely used in plasma physics because of their simple construction and versatility.
We will show below, how the probe characteristic can be used to determine the
electron density and electron temperature of a plasma.

The fundamental electric circuit of a Langmuir probe measurement is shown in
Fig. 7.3a. A small plane electrode is inserted into a gas discharge. The discharge
tube is typically operated from a high-voltage supply via a current-limiting series
resistor Rs. The probe is biased by an external voltage that is applied between the
probe and a suitable electrode. For reasons of lab safety, this electrode must be
properly grounded. Likewise, the power supply must be able to operate in a mode
where the negative output is the “hot lead” and the positive output grounded. In
this case, the anode (positive electrode) was chosen because the voltage drop in the
anode layer is usually much smaller than that in the cathode (negative electrode)
layer (see Chap. 11). A voltmeter gives the probe bias voltage Up and a current
meter the probe current Ip.

A modern realisation of the circuit for recording probe characteristics with a
computer is shown in Fig. 7.3b. The bias voltage is generated by a digital-to-analog
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Fig. 7.3 (a) Arrangement for a plane Langmuir probe in a dc-discharge. The probe is biased with
a voltage Up with respect to a proper reference electrode. (b) Computer-controlled Langmuir
probe circuit. A digital-to-analog converter (DAC) with subsequent amplifier provides a probe
bias, between −100 V and +100 V. The probe current is measured with a series resistor Rm and an
isolation amplifier, and finally A-D converted for numerical processing

converter (DAC), which delivers (−5 . . . + 5)V and is amplified 20-times by a
high-voltage operational amplifier. To protect the DAC and the computer from any
unwanted plasma currents, an optically-isolated operational amplifier is used. The
probe current is sensed as the voltage drop (< 1 V) across a small series resistor Rm
by a second optically-isolated operational amplifier. The current signal is then read
out by the computer via an analog-to-digital converter (ADC). Finally, the probe
bias is corrected by the computer for the voltage drop across the series resistor,
and the probe characteristic can be displayed and stored. Again, the probe circuit is
closed by a connection between the ground terminal of the high-voltage opamp and
the reference electrode that is connected to protective ground of the lab electrics.
For your own safety, be sure that the computer is also properly grounded. The high
voltage symbols are a reminder that all parts of the dc discharge and the probe circuit
must be properly insulated and must not be touched during operation.

Ta-
disc

ceramic
coating

(a) (b) (c)
ceramic
tube

tungsten wire

stainless
steel tube

Fig. 7.4 (a) Design of a simple plane probe. (b) Plane probe with guard ring. (c) Construction of
a cylindrical probe
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A plane probe can be made of a small tantalum disk of (2–3) mm diameter with a
fine wire welded to the back. The wire is fed through a ceramic tube, see Fig. 7.4a.
A layer of ceramic cement gives an isolating coating on the backside of the probe
and fixes it to the ceramic tube.

For space applications, the probe can be made larger. Then, it is advisable to
provide the probe with a guard ring that is held at probe potential, see Fig. 7.4b. The
probe current is only measured for the central disk. The guard ring reduces edge
effects that would lead to an increase of the saturation current with probe bias. A
cylindrical probe is sketched in Fig. 7.4c. In order to keep the pertubation of a (low-
density) plasma small, the probe construction can use a thin-walled stainless-steel
tube of ≈ 1 mm diameter, such as those made for hypodermic needles. The steel tube
gives mechanical strength and shielding for a ceramic tube that acts as isolation for
the probe wire, which has (50–100) μm thickness and (5–20) mm exposed length,
depending on the application.

A typical Ip–Up characteristic of a plane Langmuir probe is shown in Fig. 7.5.
The characteristic can be subdivided into three regimes. At high negative bias
(region I), no electrons reach the probe and a constant ion saturation current is
extracted from the plasma. At high positive bias (region III), a constant electron
saturation current is found. The magnitude of the electron saturation current is much
higher than the ion saturation current, which will be explained below. In the inter-
mediate region II, called the electron retardation regime, part of the electrons can
overcome the energy barrier and reach the probe. According to the Boltzmann factor,
the electron current increases exponentially with the bias voltage.

There are two points of specific physical significance on the characteristic. The
probe potential, at which no net current flows in the probe circuit, is identical with
that of a floating piece of metal in the plasma. This is the floating potential Φf
of the probe. The boundary between electron retardation and electron saturation
defines the plasma potential Φp, i.e., the potential inside the ambient plasma, which
is usually as zero-reference, Φp = 0.

Fig. 7.5 Characteristic of a
plane Langmuir probe in a
hydrogen plasma. Note that,
by tradition, the negative
probe current is plotted.
I: ion saturation regime,
II: electron retardation
regime, III: electron
saturation regime. The
normalized floating potential
is ηf = eΦf/(kBTe) ≈ −3.3.
The plasma potential is at
Up = 0
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7.4.1 The Ion Saturation Current

According to the Bohm criterion, the ion current flowing into the sheath is defined
by the conditions at the sheath edge and is independent of the voltage drop inside
the sheath. The ion flow is strictly perpendicular to the probe surface. Therefore, the
ion saturation current for a probe of surface area A reads

Ii,sat = 0.61ni0evB A = 0.61ni0e

√
kBTe

mi
A . (7.27)

Note that the ion saturation current depends on the ion density and the electron
temperature When the electron temperature is known, this formula can be used to
derive the ion density ni0 of the unperturbed plasma.

7.4.2 The Electron Saturation Current

The electron current at the plasma potential is the electron saturation current. This
situation is different from the case of the ion saturation current. The ions in a dis-
charge plasma with a temperature Ti � Te have gained energy in the presheath
and enter the sheath as a nearly monoenergetic group with a directed velocity. At
the plasma potential, however, there is no sheath formation. Rather, the Maxwellian
electrons of the plasma are no longer hindered to reach the probe. Therefore, all
electrons with a starting velocity directed towards the probe will reach the probe.
However, each electron that has a velocity vector inclined by an angle θ from the
normal to the probe surface, will only contribute with its perpendicular velocity,
v⊥ = ve cos θ , to the probe current.

Because the Maxwell distribution of the electrons is isotropic, we can first inte-
grate over the magnitude of the velocities, yielding the representative velocity as
the mean thermal velocity vth,e. It remains to do the proper angular average. The
fraction of electrons in the angular range between θ and θ + dθ is only determined
by the geometry

dne

ne0
= 2π sin θ dθ

4π
. (7.28)

Hence, the angular integration of the current contributions over the halfspace of
positive normal velocities becomes

Ie,sat = −A e
∫

halfspace
vth,e cos θ dne = −1

2
A e ne0 vth,e

π/2∫
0

cos θ sin θ dθ

= −1

4
A e ne0 vth,e = −1

4
A e ne0

√
8

π

kBTe

me
. (7.29)
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We finally see that the electron saturation current is proportional to the product of
the electron density and the square root of the electron temperature. Comparing
electron and ion saturation curent, we find

|Ie,sat|
Ii,sat

= 0.25

0.61

√
8mi

πme
= 0.65

√
mi

me
(7.30)

which explains why, in an argon plasma, the electron saturation is 177 times the ion
saturation current.

It is often found in probe measurements that the results for the electron density
derived from the electron current and ion density from the ion regime do not agree.
This is not a hint at a violation of the quasineutrality. Rather, it shows that some
assumptions made in probe theory, e.g., ion collisions or the effective probe geom-
etry, are not properly taken care of.

7.4.3 The Electron Retardation Current

Without proof (which can be found in Sect. 7.5.1), we can state that the electron
current in the electron retardation regime is determined by the saturation current
multiplied by the Boltzmann factor

Ie(U ) = Ie,sat exp

(
e(U − Φp)

kBTe

)
. (7.31)

This exponential increase with U can be used for determining the electron temper-
ature. The electron current can be retrieved by subtracting the ion saturation current
from the probe current in the retardation region. When we now plot the logarithm
of the electron current vs. the probe bias voltage,

ln

( |Ie(U )|
mA

)
= ln

( |Ie,sat|
mA

)
+ e(U − Φp)

kBTe
, (7.32)

we obtain a straight line with slope e(kBTe)
−1.

An example for the determination of the electron temperature is shown in
Fig. 7.6. This characteristic was obtained with a cylindrical probe, but the probe
geometry does not affect the electron saturation regime. However, the different
geometry is the reason why the currents in the electron and ion saturation regime
increase with applied voltage, as will be discussed in Sect. 7.5.4. The plasma poten-
tial is found at the inflection point of the characteristic. The evaluation starts with
fitting a model function Ii(Up), such as given by (7.55), to the ion saturation current
in the regime Φp − Up > 5kBTe/e, see Fig. 7.6a. Then, the electron retardation
current is given as Ie = Ip + Ii. This electron current Ie(Up) is shown in a semi-log
plot in Fig. 7.6b. Between −10 and 0 V, the logarithm of the electron retardation
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Fig. 7.6 (a) Linear plot of −Ip(Up). A fit to the ion saturation current is shown as dashed line. The
vertical line marks the plasma potential. (b) A log-lin plot of the (negative) electron current vs.
probe voltage shows that a Maxwellian results in a straight line, which can be used to determine
the electron temperature

current shows the expected linear increase with probe bias. This Maxwellian part of
the probe characteristic extends over more than two decades in probe current.

The electron temperature can be quickly determined from two points in this expo-
nential part of the characteristic, e.g., (−3.42 V / 0.1 mA) and (−0.64 V / 1 mA).
Using (7.31) and �Up = (3.42–0.64) V, this gives the electron temperature in volts

kBTe

e
= �Up

ln(10)
= 1.21 V . (7.33)

More accurate values can be obtained by fitting an exponential to the electron cur-
rent. Note that a least-square fit to the logarithmic data can be misleading, because
noisy (or distorted) data at low electron currents would have the same statistical
weight as smooth data at higher currents.

7.4.4 The Floating Potential

The floating potential is defined by the vanishing of the probe current Ip = 0 and
depends on the electron temperature and ion-to-electron mass ratio (cf. Problem 7.1)

Φf − Φp = kBTe

e
ln

[
0.61(2π)1/2

(
me

mi

)1/2
]
. (7.34)
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Note that the floating potential is more negative than the plasma potential, because
me/mi � 1. Since our considerations can also be applied to the sheath between the
plasma and the conducting wall of the discharge vessel, the wall potential is usually
more negative than the plasma potential.

7.5 Advanced Langmuir Probe Methods

The analysis of a Langmuir probe characteristic is not limited to thermal plasmas
and to the determination of electron temperature and density. Rather, in a non-
Maxwellian plasma, a unique relationship exists between the electron distribution
function and derivatives of the characteristic.

7.5.1 The Druyvesteyn Method

In gas discharges, the real distribution function may significantly deviate from a
Maxwellian. Druyvesteyn [146], in 1930, introduced a method to derive the electron
distribution function from the second derivative d2 Ip/dU 2

p of the probe character-
istic. His method can be derived from our previous considerations, as follows: Let
us define the z-direction as the normal to the probe surface. In the case of electron
retardation, only those electrons can reach the probe surface that have a sufficiently
large z-component to overcome the potential barrier

m

2
v2

z > eUp , (7.35)

where −Up is the probe potential with respect to the plasma. For a given magnitude
of the velocity v of an electron, this defines a restriction for the maximum angle θ

with respect to the probe normal given by

m

2
(v cos θ)2 > eUp . (7.36)

The electron retardation current to a plane probe for a given probe bias Up can be
obtained by summing up all contributions in spherical coordinates and taking care
of the restrictions for a minimum velocity vmin and the maximum angle θ(v)

je = −e

2π∫
0

dϕ

∞∫
vmin

v2dv

θ(v)∫
0

[ f (v, θ) v cos θ ] sin θ dθ . (7.37)

Here, vmin = (2eUp/m)1/2 is the minimum velocity and θ(v) = arccos(vmin/v)

the maximum angle in the integration. The Druyvesteyn method requires that the
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electron distribution function is isotropic. For this case, it is useful to replace the
velocity unit by equivalent kinetic energies expressed in volt units

f̃ (U ) = f
(√

2eU/m
)

. (7.38)

Substituting U = mv2/2e and dU = (m/e)vdv, (7.37) reads

je = −2πe

∞∫
vmin

v3dv f (v)

θ(v)∫
0

sin θ cos θ dθ

= −4πe3

m2

∞∫
Up

dUU f̃ (U )
1

2

(
1 − Up

U

)

= −2π
e3

m2

∞∫
Up

(U − Up) f̃ (U ) dU . (7.39)

The electron distribution function, which appears in the integrand, can be recovered
by differentiating the probe current twice with respect to the applied voltage. For
this purpose, we have to apply the following rule in the first step

d

dy

β(y)∫
α(y)

f (x, y)dx =
β(y)∫

α(y)

∂ f (x, y)

∂y
dx +β ′(y) f [β(y), y]−α′(y) f [α(y), y] (7.40)

and obtain

d je
dUp

= −2π
e3

m2

⎧⎪⎨
⎪⎩

∞∫
Up

[− f̃ (U )]dU − (Up − Up)︸ ︷︷ ︸
=0

f̃ (Up)

⎫⎪⎬
⎪⎭ , (7.41)

in which the contribution from the lower integration boundary cancels. In the second
derivative we obtain

d2 je
dU 2

p
= −2π

e3

m2
f̃ (Up) . (7.42)

In this way, the second derivative of the probe characteristic represents the electron
probability distribution on the volt scale. However, this is not yet the velocity dis-
tribution, because the individual intervals in volt units cover quite different velocity
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segments. Therefore, we must remove the nonlinear distortion originating from the
volt scale. This can be done by observing that

f (v) = f̃ (U )
dU

dv
= f̃ (U )

mv

e
= f̃ (U )

(
2

m

e
U
)1/2

. (7.43)

Therefore, the second derivative of the characteristic must be multiplied by the fac-
tor (2mUp/e)1/2 to obtain the proper velocity distribution.

In a magnetized plasma, in which the electron flow is one-dimensional along the
magnetic field line, the distribution function can be derived from the first derivative
of the probe characteristic (cf. Problem 7.2).

7.5.2 A Practical Realization of the Druyvesteyn Technique

The straightforward application of the Druyvesteyn method would employ calculat-
ing two numerical derivatives. For data superimposed by noise, this would dramati-
cally enhance the noise. This is why many plasma scientists apply smoothing of the
data before taking the derivatives.

A different method of noise reduction is based on modulation techniques and
narrow-band detection of Fourier components. The idea of the second harmonic
probe or the two frequency method is to use the curvature of the probe character-
istic as a nonlinear element that produces harmonics or combination frequencies.
Let us assume that the probe voltage Udc is superimposed by two sine voltages of
frequencies ω1 and ω2 and small amplitudes U1 and U2. Then the probe current can
be expanded into a Taylor series about Udc, and the addition theorems for sines and
cosines give the resulting spectral components

Ie = Ie(Udc + U1 sinω1t + sinω2t)

= Ie(Udc) + dIe

dUp

∣∣∣∣
Udc

[
U1 sinω1t + U2 sinω2t

]

+ 1

2

d2 Ie

dU 2
p

∣∣∣∣
Udc

[
1

2

(
U 2

1 + U 2
2

)
− 1

2

(
U2

1 cos 2ω1t + U 2
2 cos 2ω2t

)

+ U1U2

(
cos(ω1 − ω2)t − cos(ω1 + ω2)t

)]
. (7.44)

The probe current contains Fourier components at 2ω1 and 2ω2 as well as combina-
tion frequencies ω1−ω2 and ω1+ω2 that are proportional to the second derivative of
the probe characteristic. When only a single modulation voltage is applied, detecting
the second harmonic at 2ω1 gives the desired distribution function. The drawback
of the method is that any other nonlinearity in the electric circuit, which applies the
modulation voltage or detects the current, also produces frequency components at
2ω1, and limits the dynamic range of the method. This is often a problem when the
applied signal at ω1 leaks through the narrow-band filter centered at 2ω1.
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7.5.3 Double Probes

The Langmuir probe method, as described above, requires that the electric circuit
is closed through a suitably large reference electrode, often one of the discharge
electrodes. There are cases, where such a reference electrode is missing, as in induc-
tively generated rf discharges, or on a satellite, where it may be forbidden to use
the satellite body as a reference electrode. For these purposes, the double-probe
method was introduced [147] in which two identical Langmuir probes are operated
in series. The principle of the probe circuit is shown in Fig. 7.7a. The probes 1 and
2 are connected by a (battery operated) floating voltage source Up and a current
measuring instrument that yields Ip.

Both probes are operating near the floating potential Φf, as can be seen from
Fig. 7.7b. Note that the ratio of electron saturation current and ion saturation current
was set to an artificial value, for better readability. The maximum current, which can
flow in the probe circuit is the ion-saturation current. The other probe is then oper-
ating in the electron retardation region. Let us write the two probe characteristics
as

Ip = I i0 + I e0 exp

(
e(U1 − Φp)

kBTe

)
(7.45)

−Ip = I i0 + I e0 exp

(
e(U2 − Φp)

kBTe

)
. (7.46)

Here, we have used the current continuity, which requires that the current drawn
by probe 2 must be supplied by probe 1. These symmetrical current values ±Ip are
marked as horizontal dotted lines in Fig. 7.7b. Further, we require Up = U2 − U1.
By eliminating U1 and U2 from (7.45) and (7.46), one easily obtains (cf. problem
7.3) the double probe characteristic

Ip = I i0 tanh

(
eUp

2kBTe

)
, (7.47)

(a) (c)
U1

U2

Up

Ip

φp

(b)

Fig. 7.7 (a) Circuit of the double probe method. (b) Points of operation of the individual probes.
(c) Characteristic of a double probe. The asymptotes intersect at eUp = 2kBTe
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which is shown in Fig. 7.7c. The probe current reaches the ion-saturation current I i0
for large positive or negative bias. Therefore, the double probe can measure plasma
density, when the electron temperature is known. The electron temperature can be
derived from the slope of the characteristic at the origin (cf. Problem 7.4).

7.5.4 Orbital Motion about Cylindrical and Spherical Probes

The ion motion in a thick sheath, λDe 
 a, around a small sphere or thin wire of
diameter a with negative bias leads to an increase of the effective probe area that
exceeds the geometrical probe area. The geometry of this problem is sketched in
Fig. 7.8. Far away from the probe, the ion has a velocity v0. When collisions in the
sheath are rare, the ion motion can be described by the conservation of energy and
angular momentum, as in celestial mechanics. Therefore, this model is named the
Orbital Motion Limit (OML) of probe theory [148]. There are orbits with b < bc,
which hit the probe and contribute to the probe current. bc is the critical impact
parameter for grazing collisions. Orbits with b > bc do not contribute to the ion
current but provide space charge for shielding. In Chap. 10 we will see that all
trajectories contribute to momentum transfer to a small spherical dust grain.

The ion energy and angular momentum at large distance are

W0 = 1

2
miv

2
0 (7.48)

J0 = m iv0b , (7.49)

where b is the impact parameter. Then the conservation of energy and angular
momentum can be written as

W0 = 1

2
m i(v

2
r + r2θ̇2) + eΦ(r) (7.50)

J0 = mir
2θ̇ . (7.51)

Combining these two equations we obtain the energy equation for the radial motion

W0 = 1

2
miv

2
r + J 2

0

2mir2
+ eΦ(r) = 1

2
miv

2
r + W0

b2

r2
+ eΦ(r) , (7.52)

Fig. 7.8 Orbital motion in the
thick collisionless sheath
around a cylindrical or
spherical probe. The impact
parameter bc determines the
effective probe cross section
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which can be rearranged into an expression for the impact parameter

b = r

[
1 − eΦ(r)

W0
− miv

2
r

2W0

]1/2

. (7.53)

The critical impact parameter bc is defined by a grazing collision, vr = 0 at r = a

bc = a

[
1 − eΦ(a)

W0

]1/2

(7.54)

and depends only on the potential energy at the surface r = a. Because the potential
is attractive, we have bc > a. This means that the probe area becomes effectively
larger than the geometrical cross section. Let us denominate bc/a as the OML fac-
tor. Then this factor has to be applied to the ion current of a cylindrical probe.
For a spherical probe, the effective cross section is a circle πb2

c that replaces the
geometrical cross section πa2 and the square of the OML factor must be applied.

Replacing W0 ≈ kBTi, we can estimate the shape of the ion saturation current of
a cylindrical and a spherical probe, as shown schematically in Fig. 7.9. The argu-
ments for the electron saturation current are similar and give the same functional
dependence with W0 ≈ kBTe.

In cylindrical (or spherical) probe geometry, the attractive regime gives no longer
a constant current. We define the electron saturation current je,sat as the value of the
electron current at the plasma potential (Φp = 0). Then the electron current in the
attractive region of a cylindrical or spherical probe has the shape

je,cyl(U ) = je,sat

(
1 + eU

kBTe

)1/2

(7.55)

Fig. 7.9 Characteristics of
cylindrical (C) and spherical
probes (S) from the OML
model compared to a plane
probe (P) for a hydrogen
plasma with Te/Ti = 100.
The dashed lines give the ion
saturation currents for
cylindrical and spherical
probes
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je,sph(U ) = je,sat

(
1 + eU

kBTe

)
. (7.56)

For a cylindrical probe, the plasma potential is defined by the inflection point of the
characteristic (d2 Ip/dU 2

p = 0). For a spherical probe, there is no inflection point,
and the plasma potential, which is needed to read the electron saturation current, can
only be estimated by calculating the distance between plasma potential and floating
potential and fixing the plasma potential in this way in the measured curve.

There is a first caveat with the simple OML model presented here. The reader
will certainly be puzzled that we have not used a Bohm criterion for the ion current,
which leads to a scaling of the ion current with the electron temperature. Rather,
the ion OML-factor is based on the ion temperature. This is a side effect from using
the thick sheath approximation, which is the limit λDe → ∞. Hence, the sheath
edge is at infinity and the whole volume of interest is a sheath region. In practice,
the limit of validity of the OML model is already reached at a distance from the
probe of the order of the ion mean free path. Therefore, the OML model describes
the orbital motion during the last mean free path. Moreover, the OML model is
consistent because elastic or charge-exchange collisions with the neutral gas would
“cool” the ions from Bohm energy to gas (ion) temperature. The observed increase
of the ion collection current with applied probe bias is the typical feature of orbital
motion.

There is a second caveat. Cylindrical probes of finite length behave like spherical
probes as soon as the sheath diameter becomes comparable with the probe length.
For a deeper understanding of Langmuir probes, the reader should inspect more
specialized literature, e.g., [148–151].

7.6 Application: Ion Extraction From Plasmas

Ion thrusters are the classical example for efficient ion extraction from a plasma.
While Hall thrusters, as described in Sect. 4.3.5, perform the ion acceleration inside
the plasma volume, other concepts use a pair of grids that are in contact with a dc
or radio frequency plasma. NASA has developed a xenon ion thruster with 30 cm
diameter for use in planetary missions by the NASA Solar electric propulsion Tech-
nology Application Readiness (NSTAR) program [152]. The NSTAR engine was
successfully operated, in 1998, on the Deep Space 1 (DS1) mission [153]. A sim-
plified sketch of the DS1 thruster is shown in Fig. 7.10.

Plasma is produced by a dc discharge between a hollow cathode and a large-area
anode (see Sect. 11.1 for dc discharges). When operated at low gas pressure, a hol-
low cathode is an efficient source of electrons. Plasma confinement is enhanced by
permanent magnets (not shown). On the exhaust side, the plasma is in contact with
a pair of grids. The inner screen grid, which has the same potential as the cathode,
confines the primary electrons electrostatically and terminates the plasma. Between
the anode, which essentially defines the plasma potential, and the electron source
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Fig. 7.10 Sketch of the 30 cm
diameter ion thruster for the
Deep Space 1 mission (cross
section). Ion acceleration
occurs between the screen
grid and accelerator grid. The
device reaches ≈ 90 mN
thrust and a specific impulse
of 3,200 s. (Reprinted with
permission from [153]. c©
2002, American Institute of
Physics)
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that acts as neutralizer, a high acceleration voltage of typically 1,000 V is applied.
The accelerator grid is held at about −200 V w.r.t. to the neutralizer to prevent the
electron beam to enter the discharge region. The total voltage difference of 1,200 V
between the two grids is used for ion acceleration. An outer shield prevents that
electrons are accelerated towards the anode.

A few words on the language of rocketry: Thrust is the reaction force from the
ion beam leaving the thruster with exhaust speed vex at a mass-flow rate dm/dt ,

Ft = dm

dt
vex . (7.57)

Specific impulse is a measure for the fuel efficiency, and is defined by the change in
momentum per unit weight on Earth, i.e.,

Isp = Ft

g dm/dt
= vex

g
, (7.58)

where g is the gravitational acceleration at the Earth surface. Chemical propellants
reach a specific impulse of (250–450) s, typically.

The parameters of the DS1 thruster are compiled in Table 7.2. The holes in the
acceleration grid are much smaller than those in the screen grid to reduce the loss
of neutral propellant gas. The hole combinations act as ion lenses and yield a trans-
parency for ions of up to 83%.

To apply our basic knowledge of space charge limited ion-flow, we can try some
reverse engineering of the DS1 engine. From the Child-Langmuir law (7.11) and
setting mi ≈ 131mp, U = 1200 V and d = 0.66 mm, we obtain a maximum space-
charge limited ion current density of 460 A m−2. Taking 15,000 holes of 2.8 mm2

each, yields a maximum current of 20 A. The actual maximum ion beam current of
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Table 7.2 Parameters of the deep space 1 thruster [152, 153]

Screen grid Thickness 0.38 mm
Hole diameter 1.91 mm
Optical transparency 67%

Acceleration grid Thickness 0.51 mm
Hole diameter 1.14 mm
Optical transparency 24%

Matching hole pairs 15,000
Ion transparency (Effective) 83%
Grid separation 0.66 mm

Electron Density 1017 m−3

Temperature 5 eV
Xenon Density 1018 m−3

Mass flow ≤ 23 sccm

Thrust ≤ 92 mN
Specific impulse ≈ 3,200 s

the DS1 thruster was 1.8 A. This is a hint that the ion current is not limited by space
charge in the grid region but is determined by the ionization rate in the plasma. The
theoretical maximum current that can leave a plasma is the Bohm current jB =
0.61nie(kBTe/m i)

1/2 ≈ 190 A m−2, which would correspond to a total current of
8.4 A entering the grid openings. This is a further hint at a reduction of the electron
density in the region before the screen grid that results from the limited ionization
rate.

7.7 Double Layers

We have learnt in Sect. 7.3 that a collisionless plasma can only deliver a maxi-
mum ion current, the Bohm current, which initiates the formation of a space charge
sheath. On the other hand, this plasma can carry a much higher electron current.
Langmuir [154] had found that sudden potential jumps form inside the plasma vol-
ume, mostly close to constrictions of the diameter of his discharge tubes. He called
these structures double layers (DLs).

Double layers are found in laboratory and astrophysical plasmas. Raadu had
[155] pointed out that, because particles are accelerated by the net potential dif-
ference Φ0 of a DL, the DL acts as an electric load dissipating energy at a rate I Φ0,
where I is the total current through the DL. In this way, a DL exhibits an internal
resistance. The nature of this resistance is quite different from an ohmic resistance,
which transforms electric energy to random motion. Rather, a DL resembles an old-
fashioned television tube, in which an electron beam is generated that produces the
moving luminous dot on the screen. Since the DL acts as a load, there has to be an
external source that maintains the potential difference. In the laboratory, this is an
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electrical power supply, whereas in space it may be the magnetic energy stored in
an extended current system, which responds to a change in current with an inductive
voltage.

7.7.1 Langmuir’s Strong Double Layer

The geometry of a double layer (DL) is sketched in Fig. 7.11. The potential step
is caused by a positive space charge, which causes the negative curvature and a
negative space charge responsible for the positive curvature of the electric potential.
The system is assumed one-dimensional with variation in x-direction only.

Let us assume that ions enter the system at x = 0 and at an initial potential
Φ = Φ0 with a current density ji = eni0vi0 and are accelerated by the DL potential
Φ(x). Electrons enter at the low-potential side x = L with a negative velocity (but
positive current density) je = −ene0ve0. By continuity, each of these currents is
conserved. From energy conservation, the instantaneous velocities of electrons and
ions during the transit are

vi =
√
v2

i0 + 2e(Φ0 − Φ)/mi

ve = −
√
v2

e0 + 2eΦ/me , (7.59)

in which the initial velocities have been introduced to avoid singularities at x = 0
and x = L . These initial velocities can be neglected later for sufficiently high values
of the potential step Φ0 
 kBTe/e. This limiting case defines a strong DL. Weak
DLs, which require a description by kinetic theory, are discussed in [155, 156]. DL
experiments were reviewed in [157, 158]. Using the conservation of the currents,
we can replace the densities in Poisson’s equation by velocities

Fig. 7.11 The potential
distribution in a strong double
layer (full line) and the
associated space charge in
arbitrary units (dashed line)
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ε0Φ
′′ = − ji(

v2
i0 + 2e(Φ0 − Φ)/mi

)1/2 + je(
v2

e0 + 2eΦ/me
)1/2 . (7.60)

Multiplying by Φ ′ and integrating from 0 to x we obtain

ε0

2

[
Φ ′(x)2 − Φ ′(0)2

]
= mi

e
ji

[(
v2

i0 + 2e(Φ0 − Φ)

mi

)1/2

−
(
v2

i0 + 2eΦ0

mi

)1/2
]

+me

e
je

[(
v2

e0 + 2eΦ

me

)1/2

− |ve0|
]

. (7.61)

The electric field must vanish at x = 0 and x = L , because we assume that the
plasma is quasineutral for x < 0 and x > L . However, this quasi-neutrality cannot
be established by the free streaming electrons and ions alone [156]. This becomes
evident, when we require quasineutrality on the high potential side and notice that
the ions become diluted by acceleration in the sheath. Using the same argument for
the electrons, their density must be higher on the low-potential side and quasineu-
trality would be violated on the low-potential side. Therefore, additional populations
of trapped particles must exist, electrons on the high-potential side and ions on the
low-potential side, which establish the quasineutrality. However, these trapped (ther-
mal) particles cannot penetrate into the sheath because of the high potential step in
a strong double layer. This is why we can approximately set Φ ′(0)2 ≈ 0 near the
edges of the strong double layer, because the square of the electric field becomes
small compared to the values inside the DL. Therefore, we can rewrite (7.61) in the
limit of vanishing initial velocities as

0 = −mi

e
ji

√
2eΦ0

mi
+ me

e
je

√
2eΦ0

me
. (7.62)

This result gives the Langmuir citerion for a strong DL

je
ji

=
(

mi

me

)1/2

. (7.63)

We see that the electrons contribute most of the current in a DL. On the other
hand, the Langmuir criterion specifies that both charge carrier species, which are
accelerated by the same space charge potential, contribute to the same degree in the
formation of this space charge. Hence, we obtain a symmetrical space charge by ion
depletion on the low-potential side and by electron depletion on the high-potential
side. The condition that the electric field vanishes at x = L is equivalent to the
macroscopic neutrality of the DL
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E(L) = E(0) + e

ε0

L∫
0

(ni − ne)dx . (7.64)

The physical meaning of the Langmuir criterion can be understood as follows:
Remember that ji/e is the (constant) ion flux density and mi(2eΦ0/mi)

1/2 is the
momentum, which the ion has gained in traversing the DL. Then (7.53) states that
the ion momentum flux, which leaves the DL at x = L , is the same as the electron
momentum flux leaving at x = 0 [159]. This relation can be interpreted as a force
equilibrium, which ensures that the DL stays at rest. On the other hand, when this
condition is violated, the DL will move at a speed vDL, which ensures that, in the
moving frame of reference, the Langmuir criterion is again fulfilled.

We can go even further and apply the argument of momentum fluxes to the inte-
rior of the DL. Rearranging (7.61) in the limit of vanishing initial velocities yields

−ε0

2
Φ ′(x)2+ ji

e
mi

(
2e[Φ0 − Φ(x)]

mi

)1/2

+ je
e

me

(
2eΦ(x)

me

)1/2

= const . (7.65)

This means that, at any place inside the DL, the sum of the negative electric Maxwell
stress (which represents the tension of the electric field lines) and the particle
momentum fluxes is constant. In other words, the potential is shaped by the ion
and electron ram pressure like a rubber membrane.

At the end of this paragraph, a word of caution is necessary: Langmuir’s strong
DL is still a simplified toy model which neglects that there is a kinetic pressure of the
electron and ion gas on both sides of the DL, and that part of the electron population
on the high potential side as well as an ion population on the low-potential side will
be transmitted by the DL.

7.7.2 Experimental Evidence of Double Layers

A detailed comparison of DL potential structure and the electron distribution func-
tion was made by Coakley and Hershkowitz [160]. The strong double layer with
eΦ/kBTe = 14 was generated between two grids that separate the three sections of
a triple-plasma device, as shown in Fig. 7.12.

The voltage difference of the grids defined the DL potential. The electron dis-
tribution function was measured with a Langmuir probe. In the present situation, a
directed electron beam is generated. Therefore, the beam appears in the first deriva-
tive of the probe characteristic (see Sect. 7.5.1 and Problem 7.2). The distribution
functions are plotted for a sequence of positions that are approximately 2 cm apart.
The dashed horizontal line marks the energy zero on the low-potential side. The
solid line indicates the variation of the plasma potential.
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Fig. 7.12 Comparison of the
potential shape in a DL and
the electron energy
distribution. The accelerated
population is marked with
arrows, the trapped electrons
are marked with a dashed
line. (Reprinted with
permission from [160]. c©
1979, American Institute of
Physics)

The arrows mark a group of free electrons that becomes accelerated when going
from the low-potential side (left) to the high-potential side (right) of the DL. A
second group of trapped electrons is found on the high-potential side. Its position is
marked by the dashed line. Note, how the height of the latter peak decreases when
approaching the repulsive potential of the DL. These experimental results confirm
the general description of strong double layers given in Sect. 7.7.

The Basics in a Nutshell

• The Child-Langmuir Law

j = 4

9

(
2e

m

)1/2 U 3/2

d2

describes the maximum, space-charge limited current in a single-species
system of length d for an applied voltage U .

• Space-charge limited currents appear in plasma sheaths and in grid regions
for ion extraction.

• The Bohm criterion for a sheath, vi = vB = (kBTe/mi)
1/2 states that ions

must enter the sheath with ion-sound speed.
• The current–voltage characteristic of a plane Langmuir probe has the parts:

ion saturation regime, electron retardation regime and electron saturation
regime. The floating potential is defined by I = 0, the plasma potential is
the transition point from electron retardation to electron saturation current.

• The ion saturation curent of a plane probe is Ii,sat = exp(−1/2)envB. The
electron saturation current is Ie,sat = −(1/4)envth,e. Both currents can be
used to determine the plasma density n, when the electron temperature is
known.

• The electron temperature is obtained from a semi-log plot of the electron
retardation current vs. the probe voltage.

• A current-carrying collisionless plasma can spontaneously form a localized
internal potential drop, called a double layer.
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Problems

7.1 Derive (7.34) for the floating potential. Which values takes the floating potential
for a plasma of kBT = 3 eV containing hydrogen ions or argon ions?

7.2 In a magnetized plasma, electrons can only move freely along the magnetic
field lines. Therefore, the Druyvesteyn method for a magnetized plasma can be
established from a one-dimensional distribution function f (vz). Then the electron
current to the probe is given by the integral

je = −e

∞∫
vmin

vz f (vz)dvz .

Show that the distribution function for a one-dimensional situation can be recovered
from the first derivative of the probe characteristic.

7.3 Derive the double probe characteristic (7.47) by eliminating U1 and U2 from
(7.45) and (7.46).

7.4 Show that the slope of the double probe characteristic (7.47) at the origin can
be used for determining the electron temperature. Explain, why the asymptotes in
Fig. 7.7c intersect at Up = 2kBTe/e.



Chapter 8
Instabilities

“And if you take one from three hundred and sixty-five, what
remains?”
“Three hundred and sixty four, of course.”
Humpty-Dumpty looked doubtful. “I’d rather see that worked
out on paper.”

Lewis Carroll, Through the Looking-Glass

The stability of a plasma system can be analyzed by different methods. For a simple
mechanical system, such as the pendulum consisting of a massless rod and a bob
shown in Fig. 8.1a, stability is defined by the property that a deflection from the
equilibrium position (shown in grey) leads to a restoring force Frest, which drives the
pendulum back to its original position. The interplay of a restoring force, which is
proportional to the deflection, and the inertia of the pendulum bob leads to harmonic
oscillations.

The inverted pendulum in Fig. 8.1b has a quite different behavior. A deflection
from the unstable equilibrium leads to a force Fdefl that tends to increase the initial
deflection. Because the deflecting force is again proportional to the deflection angle,
an initial perturbation will grow exponentially in time.

Stability of a system can also be studied by analyzing its potential energy Wpot as
shown in Fig. 8.1c,d. The system is stable, when the potential energy increases for
any possible perturbation. Therefore, the minimum of the potential energy is such a

Fig. 8.1 (a) A classical
pendulum experiences a
restoring force after an initial
deflection. (b) The inverted
pendulum develops a growing
deflection because the
deflecting force increases
with the deflection angle.
(c) A system is stable when
the potential energy takes a
minimum at the equilibrium.
(d) Instability occurs, when
there is a neighboring state of
lower potential energy

A. Piel, Plasma Physics, DOI 10.1007/978-3-642-10491-6_8,
C© Springer-Verlag Berlin Heidelberg 2010
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stable point. The original equilibrium is unstable if there is any neighboring point
of lower potential energy. While the calculation of restoring or deflecting forces
allowed an immediate quantitative prediction of the pendulum’s motion, the energy
analysis does not tell immediately how the system reaches the lower energy state.

A third way of studying stability is to decompose a small initial perturbation into
Fourier components, called modes, ∝ exp(−iωt). If the frequencies of all modes are
real, the system is stable. But if any of these Fourier modes has a complex frequency
ω with a positive imaginary part, this mode will grow in time. This technique is
called normal mode analysis.

In this Chapter, we will study two different classes of instabilities. The first class,
named microinstabilities, describes homogeneous plasmas, which have a distribu-
tion function that deviates substantially from a Maxwellian. Typical members of this
class are situations with a beam (electron or ion) traversing a population of plasma
particles at rest. Because these systems can be treated by simple mathematical
methods, we will use a beam-system to study the influence of finite length on the
instability, which is of high practical interest for laboratory experiments.

The second class of macroinstabilties is characterized by inhomogeneity in real
space. Here, we are interested in the stability of current-carrying pinch plasmas and
in situations that resemble the situation of a heavy fluid resting on a lighter fluid
under the influence of gravity.

8.1 Beam-Plasma Instability

It was Langmuir who noticed that oscillations at the electron plasma frequency
(Langmuir oscillations) can spontaneously grow in a non-equilibrium plasma [154].
Such a non-equilibrium distribution function can consist of a background plasma
and a group of fast electrons travelling in the same direction (beam). When the
velocity of the beam is large compared to the thermal velocity of the background
electrons, the plasma bulk can be simply described by a cold plasma model. Since
we are interested in high-frequency waves near the electron plasma frequency, the
ions will not participate in the wave motion and form a uniform neutralizing back-
ground.

8.1.1 Non-Thermal Distribution Functions

The electron distribution function for the beam-plasma system is sketched in
Fig. 8.2a. The reader may wonder why here the axes have been interchanged. The
reason becomes clear from the analogy to an atomic system with (non-degenerate)
energy levels a, b, c as shown in Fig. 8.2b. The equilibrium population of these
levels is given by the Boltzmann factor n(W ) ∝ exp[−W/(kBT )]. Such an atomic
system can be used as a laser, wenn the populations of levels b and c are inverted,
i.e., when the population in c is higher than that in b.
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Fig. 8.2 (a) Electron velocity distribution f (v) for the beam-plasma system. (b) Analogy to pop-
ulation inversion in an atomic laser system. The solid line gives the thermal population according
to a Boltzmann factor. The dashed box indicates the overpopulation of level c w.r.t. the thermal
population in level b

Consider the production rate of photons, which is given by the (negative) rate at
which the upper laser niveau c is net depopulated by the competition of stimulated
emission Bbcnphnc and absorption Bcbnphnb,

dnph

dt
= −dnc

dt
= Bbcnphnc − Bcbnphnb . (8.1)

Spontaneous emission processes between levels c and b can be neglected at high
photon density. For non-degenerate levels, the Einstein coefficients are identical,
Bcb = Bbc. The number of photons grows exponentially in time when nc > nb.
The associated exponential growth in the photon density is the laser process. This
analogy shows that instability in terms of exponentially growing waves is a conse-
quence of the strong deviation from thermal equilibrium.

For the beam-plasma situation, let us denote the total electron density by ne0 with
a correponding electron plasma frequency ωpe. The beam population represents a
fraction nb = αbne0 of the total electron population, and we will assume αb � 1.
The beam velocity is v0. The problem is considered as one-dimensional with the
beam propagating in x-direction.

8.1.2 Dispersion of the Beam-Plasma Modes

In Sect. 6.4 we had used first-order perturbation theory to derive the dielectric func-
tion of a cold plasma as

ε(ω) = 1 − ω2
pe

ω2
= 1 + χp . (8.2)

The dielectric function is the sum of the permittivity of the vacuum (“1”) and the
susceptibility χp(ω) of the plasma electrons. χp can also be interpreted as the ratio
of the electron conduction current to the vacuum displacement current, at a given
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frequency ω. From this example, we can immediately write down the total dielectric
function for the beam-plasma system

ε(ω, k) = 1 + χp + χb = 1 − (1 − αb)ω
2
pe

ω2 − αbω
2
pe

(ω − kv0)2 . (8.3)

Here, we have adjusted the electron densities by the factors (1 − αb) and αb and
used the Doppler-shifted frequency in the denominator of χb. The reader can see
that, for electrostatic waves, the dielectric constant of a plasma can be simply com-
posed by adding up the susceptibilities of the participating plasma constituents. For
completeness, a derivation of the Doppler shift in the beam susceptibility will be
given below in Sect. 8.1.4.

Electrostatic (longitudinal) waves are characterized by ε = 0, which defines
the dispersion relation ω(k). Inspecting (8.3), we see that determining the zeroes of
this equation is mathematically equivalent to solving a fourth-order polynomial with
real coefficients. As stated by the fundamental theorem of algebra, such polynomials
have either real roots or pairs of complex-conjugate roots. Therefore, we expect four
independent branches of wave dispersion ω(k). If a pair of complex-conjugate roots
appears, we are finished because one of these complex roots will be exponentially
growing in time and defines instability.

Let us first inspect the functional dependence of the dielectric function ε(ω, k)
(8.3) on the wave frequency ω, which is plotted in Fig. 8.3 for various values
of αb. The dielectric function has (negative) singularities for ω = 0 and ω = kv0,
as expected from the vanishing denominators of (8.3). There is one real root,
ω/ωpe ≈ −1 that is nearly unaffected by the presence of the beam. The roots with
ω/ωpe > 0 show a different pattern. For the weakest beam fraction (αb = 0.001),
there is one root close to ω/ωpe = +1. We identify these two roots as the plasma
modes. A second pair of roots is found symmetric about ω/ωpe = kV0/ωpe, which
we call beam modes. With increasing αb, the separation between the beam roots
increases until the left beam root merges with the right plasma root. For even

Fig. 8.3 The dielectric
function of the beam-plasma
system (8.3) for
kv0/ωpe = 1.5. For
αb = 0.001 and αb = 0.01
there are four real roots. A
pair of complex roots is
expected for αb = 0.01
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Fig. 8.4 The dispersion
relation for the beam-plasma
modes at αb = 0.01. The
dotted lines mark the
asymptotes ω = ωpe and
ω = kv0. The plasma mode
develops into the fast
space-charge wave which
then approaches the fast
beam mode. For
kv0/ωpe < 1.3 the beam
mode is a complex conjugate
slow space-charge wave. At
the triple point it splits into
stable modes, a slow beam
mode and a plasma mode.
The second plasma mode
with negative ω remains
unaffected by the beam

higher values of αb, the dielectric function stays negative in the entire interval
0 < ω < kv0. However, if ω is taken as a complex quantity, there will be a pair
of conjugate complex roots with the real part of ω lying in this interval.

The dispersion relation for the beam-plasma modes consists of different branches
ω(k), see Fig. 8.4. According to our wave perturbation ∝ exp[i(kx − ωt)] and
allowing for a complex ω = ωr + iωi , there will be growing waves ∝ exp[i(kx −
ωr t)] exp[ωi t], when ωi > 0. In the limit αb � 1, the plasma modes at ω =
±ωpe and the (degenerate) beam mode ω = kv0 are uncoupled (see dotted lines
in Fig. 8.4). For non-vanishing αb, the positive plasma mode connects to the
beam mode and becomes the fast space-charge wave, which has ω/k > v0. For
kv0/ωpe < 1.3 the beam modes form a conjugate pair. These waves are propagating
more slowly than the beam and are called slow space-charge waves. The one with
ωI > 0 is exponentially growing in time. The growth rate takes a maximum value
near the intersection ωpe = kv0. At the triple point, the slow space-charge waves
become real and form the slow beam mode and the plasma mode. The second plasma
mode with negative ω remains unaffected by the beam.

8.1.3 Growth Rate for a Weak Beam

For small values of αb, the slow space-charge wave that has the maximum growth
rate γ = ωI, is found close to kv0/ωpe = 1. This means that the phase velocity of the
wave is nearly resonant with the electron beam, vϕ ≈ v0. Therefore, it is reasonable
to seek an approximate solution for ε(ω, k) = 0 in the vicinity of the resonance
point ωpe = kv0. Introducing ω = ωpe + �ω, we can rewrite the dielectric function
in this regime as
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0 = ε = 1 − ω2
pe

(ωpe + �ω)2 − αbω
2
pe

(ωpe + �ω − kv0)2 (8.4)

≈ 1 − ω2
pe

ω2
pe

+ 2�ω

ω3
pe

− αbω
2
pe

(�ω)2 . (8.5)

In the second line, we have used a Taylor expansion of the plasma dielectric function
for �ω � ωpe, and applied the resonance condition in the last term. Solving for �ω,
we obtain

�ω =
(αb

2

)1/3
ωpe en2π i/3 with : n = 0, 1, 2 . (8.6)

Here, we have noticed that there are three roots in this region, two of which are
complex. (A fourth root at ω = −ωpe is non-resonant). This gives, for n = 0, the
fast space charge wave as

ω = ωpe

[
1 +

(αb

2

)1/3
]

. (8.7)

The slow space-charge wave has

ωR = ωpe

[
1 − 1

2

(αb

2

)1/3
]

(8.8)

ωI = ±31/2

2

(αb

2

)1/3
ωpe . (8.9)

The most spectacular result for the unstable mode is the fact, that the growth rate
depends on the third root of the beam fraction αb. Therefore, a beam fraction of α =
0.002 generates a wave that has an e-folding after only ten wave periods (ωR/ωI ≈
10). The real part of the frequency is close to ωpe and this wave can therefore be
identified as the Langmuir wave. The high growth rate explains why self-excited
Langmuir oscillations are so ubiquitous in dc discharges.

8.1.4 Why is the Slow Space-Charge Wave Unstable?

Let us first consider the motion of a single electron in an oscillating electric field,
which is described by (6.30) and results in an an oscillatory velocity of amplitude

v̂e = e

iωme
Ê . (8.10)
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Because of the inertia of the electron, the oscillation velocity v̂e lags behind the
electric force −eÊ by a phase angle of 90◦. In the language of electronics, the
electric “current” −ev̂e lags behind the “voltage” Ê . Hence, an electron behaves
like an inductor.

Consider now an electron with velocity v0 in a wave field. This beam electron
obeys the linearized equation of motion

∂vb

∂t
+ v0

∂vb

∂x
= − e

me
Ê exp[i(kx − ωt)] . (8.11)

In Fourier notation, and solving for the oscillation velocity, this becomes

v̂b = e

i(ω − kv0)me
Ê . (8.12)

Again, the electron behaves as an inductor, as long as ω−kv0 > 0, which is realized
for the fast space-charge wave. But, for the slow space-charge wave, the opposite
case is realized with ω−kv0 < 0. Therefore, beam electrons show a strange behavior
when they interact with the slow wave. Their motion in the wave field is such as if
they had a “negative mass”. In the language of electronics, the electron now behaves
like a capacitor for which the current leads the voltage by a phase shift of 90◦.

We can easily see that the concept of a “negative mass” has a physical meaning.
We will discuss this effect in terms of the average kinetic energy of the wave. For this
purpose, we must calculate the density fluctuations in the beam, which are related
to the velocity modulation by the continuity of the flow

∂nb

∂t
+ ∂(nbvb)

∂x
= 0 . (8.13)

Linearizing nb = nb0 + nb1, vb = v0 + vb1, and setting the first-order quantities
∝ exp[i(kx − ωt)], we obtain for the perturbed quantities

(−iω + kv0)n̂ + iknb0v̂b = 0 (8.14)

and

n̂b = nb0k

ω − kv0
v̂b . (8.15)

The density fluctuations are in phase with the velocity fluctuations for the fast wave
ω − kv0 > 0 but opposite to the velocity fluctuations for the slow wave. Using the
velocity fluctuations from (8.12), we find the density fluctuations as

n̂b = enb0k

i(ω − kv0)2
Ê . (8.16)



204 8 Instabilities

The mean kinetic energy of the beam can be written as

〈Wkin〉 = 1

2
me

〈
(nb0 + n̂b)(v0 + v̂b)

2〉

= 1

2
me

〈
nb0v

2
0 + 2nb0v0v̂b + nb0v̂

2
b + n̂bv

2
0 + 2n̂bv0v̂b + n̂bv̂

2
b

〉
, (8.17)

where 〈· · · 〉 denotes the average over one wavelength. In the sum on the r.h.s.,
all odd powers of fluctuating quantities vanish in the average. Therefore, the only
remaining terms are the zero-order beam energy and the second-order corrections

〈Wkin〉 = 1

2
nb0mev

2
0 + 1

2
me

〈
nb0v̂

2
b + 2n̂bv0v̂b

〉
. (8.18)

Using (8.15), we find that for nearly resonant particles, |ω/k −v0| � v0, the second
term in the angle brackets is much larger than the first. Moreover, this contribution
of the wave to the beam energy has different signs for the slow wave and the fast
wave.

For deriving the energy relations, Fig. 8.5 shows the electric field, the velocity
fluctuation, the density fluctuation of the beam, and the resulting beam energy from
the second-order contribution (8.18). On average, the beam energy is lowered by the
presence of the wave. This justifies the terminology of a negative energy wave [161].

Fig. 8.5 The slow
space-charge wave. (a)
Electric field, (b) beam
velocity modulation, (c)
beam density modulation, (d)
resulting beam kinetic energy.
The mean beam energy is
reduced by the presence of
the wave
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The coupling of this negative energy wave with the plasma fluctuations (which rep-
resent a positive energy wave) is the reason for wave growth. The loss in kinetic
energy appears as gain for the wave potential energy. In this way, the wave potential
grows in time at the expense of the beam velocity. In Sect. 9.4 we will trace this
evolution into the non-linear regime by means of computer simulations.

Returning to the concept of “negative mass”, for the slow wave, the density
clumps are growing by decelerating the original beam whereas, for the fast wave,
the clumps are filled up by accelerating slower electrons. In the first case, energy is
transfered from the beam to the wave, and the wave grows, in the second case. the
wave accelerates electrons, thereby losing energy.

8.1.5 Temporal or Spatial Growth

In the last paragraph it was assumed that the wave is characterized by an imaginary
part ωi of the wave frequency. This means that everywhere the wave amplitude
grows at the same rate. In the beam-plasma system, one can also imagine an unmod-
ulated beam that enters a finite plasma. While the beam propagates through the
plasma, any small wave-like perturbation will grow in space. For this case, we have
to solve the dispersion relation ε(ω, k) = 0 with the dielectric function from (8.3)
for real frequency ω and complex wavenumber k. Simple algebraic manipulation
gives

kv0 = ω + i

(
αbω

2
peω

2

ω2
pe − ω2

)1/2

, (8.19)

Fig. 8.6 The spatial growth
rate in the beam-plasma
system for αb = 0.1 as a
function of the real wave
frequency ω. Note that the
growth rate even becomes
infinite at ω = ωpe
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which yields the imaginary part of the wavenumber (as shown in Fig. 8.6)

kI = ωpe

v0

α
1/2
b ω

(ω2
pe − ω2)1/2 . (8.20)

The subtle differences between spatial and temporal growth are discussed in [162].

8.2 Buneman Instability

A second, related example for the instability of counter-streaming charged particles
is found in a current carrying plasma, in which a dc electric field leads to a flow of
all plasma electrons relative to the ions. This instability was first discussed by Oscar
Buneman (1913–1993) [163]. Again we neglect collisions and assume that the drift
velocity of the plasma ions is much smaller than the electron beam velocity. There-
fore, we describe the instability in the rest frame of the ions. Further, we assume that
the electron beam velocity v0 is much higher than the thermal spread of the electron
distribution (cold beam approximation).

8.2.1 Dielectric Function

The dielectric function for this system contains the susceptibilities of stationary ions
and beam electrons

ε(ω, k) = 1 + χi + χe = 1 − ω2
pi

ω2
− ω2

pe

(ω − kv0)2
. (8.21)

Here, the ion contribution is determined by the ion plasma frequency ωpi, which
accounts for the higher ion mass. Obviously, the mathematical structure of the prob-
lem is similar to the beam-plasma instability in (8.3) when we recognize that, for
equal electron and ion density, ω2

pi/ω
2
pe = me/mi is a small quantity. Different from

the beam-plasma system, it is now the ion term that represents a small perturbation
of the streaming electrons. Therefore, we can expect that the unstable waves have
frequencies that are small compared to the electron plasma frequency. These low-
frequency ion fluctuations couple with the Doppler-shifted electron plasma oscilla-
tions in the beam.

The dispersion branches for the Buneman instability are shown in Fig. 8.7. The
instability is generated by the coupling of the slow beam mode ω4, which is a neg-
ative energy wave, to the ion plasma fluctuations near ωpi, resulting in the unstable
branch ω1,2.
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Fig. 8.7 Dispersion branches
ε = 0 for the Buneman
instability. The dotted line
gives the (uncoupled) slow
beam mode. The real part
(full lines) and imaginary part
(dashed lines) of ω are shown
as function of normalized
wavenumber. For clarity, an
artificial mass ratio
me/mi = 0.3 was chosen

8.2.2 Instability Analysis

The dispersion relation ε(ω, k) = 0 can be rewritten as

kv0 − ω = ± ωpe

(1 − ω2
pi/ω

2)1/2
≈ ±ωpe

(
1 + ω2

pi

2ω2

)
. (8.22)

In the second step, we have made the approximation ω2
pi � ω2, which justifies a

Taylor expansion, This assumption has to be confirmed later. The minus sign gives
the real solution while the plus sign leads to complex ω. Setting ω = |ω|eiθ and
requiring that the imaginary parts cancel in (8.22) yields

|ω|3 = ω2
piωpe cos(θ) . (8.23)

The maximum unstable mode can be found by setting dωI/dθ = d[|ω| sin(θ)]/
dθ = 0, which gives θ = π/3. Hence, the maximum unstable mode has

ωR = 1

2

(
me

2mi

)1/3

ωpe

ωI =
√

3

2

(
me

2mi

)1/3

ωpe . (8.24)

In the end, we see that ω2
R/ω

2
pi = 0.157(mi/me)

1/3 ≈ 1.9 . . . 6.3 (for ion masses
from hydrogen to argon), which justifies the Taylor expansion made above. Note
that, for this instability, the growth rate is slightly larger than the wave frequency.
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The Buneman instability is therefore a violent interaction mechanism between beam
electrons and plasma ions, which results in e-folding of the amplitude within less
than a wavelength.

8.3 Beam Instability in Finite Systems

In this Section, we are interested in the influence of finite length on the electron
beam instabilities. Such a system is known as a Pierce diode [164–169]. The original
question addressed by John R. Pierce (1910–2002) was finding the maximum stable
electron current in the presence of a background of positive ions that neutralizes the
mean electron space charge. The extended Pierce diode, which allows for external
circuit elements, is often used as a simplified model for studying the stability of
finite-size collisionless discharge systems with an electron flow [170–174]. Inter-
est in this model system arose again in the late 1980s with respect to the nonlin-
ear waves and chaos [175–177] or the influence of ion dynamics [169, 178, 179].
Computer simulations [177, 180–182] made the nonlinear and chaotic states acces-
sible. The system was also used as a model for chaos control in plasma systems
[183–186].

8.3.1 Geometry of the Pierce Diode

The Pierce diode consists of two conducting planes at x = 0 and x = L . The
electrode at x = 0 can be considered as a transparent grid through which an unmod-
ulated electron beam with a velocity v0 can enter the system. The diode is filled
with a homogeneous neutralizing background of immobile ions. The name Pierce
diode alludes to vacuum diodes, in which the left electrode (cathode) is a thermal
emitter of electrons, which are accelerated by a positive voltage on the right elec-
trode (anode). The electron flow in diodes will be discussed in detail in Sect. 9.2.

Fig. 8.8 Schematic of the
classical Pierce diode. An
unmodulated electron beam
with velocity v0 enters the
diode through the grid at
x = 0. The diode is
neutralized by a
homogeneous background of
immobile ions
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Different from the vacuum diode, both electrodes in the classical Pierce diode are
connected to each other and held at ground potential Φ = 0 (Fig. 8.8). The classical
Pierce diode is completely characterized by a single parameter αP = ωpeL/v0, as
we will see below.

8.3.2 The Dispersion Relation for a Free Electron Beam

The dielectric function for an electron beam traversing an immobile ion background
is the same as for the Buneman instability (8.21), except for ωpi = 0 due to the
assumed immobility of the ions that can be achieved by assigning an infinite ion
mass. Then, the oscillations in the electron beam follow from

0 = ε(ω, k) = 1 − ω2
pe

(ω − kv0)2 . (8.25)

These are waves travelling with the beam or against the beam with wavenumbers

k+ = ω + ωpe

v0
and k− = ω − ωpe

v0
. (8.26)

8.3.3 The Influence of the Boundaries

Intuitively, we could assume that the influence of the boundaries is the formation of
standing waves. However, the situation is more complex, because the forward and
backward propagating waves have different wavelength. Moreover, we must account
for electric charges on the surface of the metallic boundaries, which also produce an
electric field inside the diode. This is why Pierce composed the oscillating electric
wave potential inside the diode from four ingredients:

Φ̃(x, t) =
(

Ax + Be−ik+x + Ce−ik−x + D
)

e−iωt . (8.27)

Ax + D is the solution for the potential in a parallel plate capacitor in vacuum. The
other terms represent the two counterpropagating waves. The following boundary
conditions must be met by the resulting full wave field:

0 = Φ̃(0, t) = Φ̃(L , t) = ñe(0, t) = ṽe(0, t) . (8.28)

The first two conditions require the vanishing of the electric potential at the grounded
electrodes, the other two conditions state that the electron beam is not modulated
when it enters the diode. The potential condition at x = 0 then gives

0 = Φ̃(0, t) = B + C + D . (8.29)
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Noting that ñe ∝ ∂2Φ̃/∂x2, we have

ñe(0, t) = 0 = −k2+B − k2−C . (8.30)

The vanishing of the longitudinal oscillations in the electron beam requires some
detailed considerations. Besides the wave-like terms there must also be a component
v̄ corresponding to the oscillation in the electric field of the surface charges:

ṽ =
[
v+eik+x + v−eikx + v̄

]
e−iωt . (8.31)

The entire oscillating velocity ṽ must obey the linearized equation of motion

∂ṽ

∂t
+ v0

∂ṽ

∂x
= e

m

∂Φ̃

∂x
, (8.32)

which gives the relations between the independent coefficients v+, v− and v̄

v+ = − e

m

k+
ω − k+v0

B , v− = − e

m

k−
ω − k−v0

C , v̄ = e

m

1

iω
A . (8.33)

The vanishing of ṽ(0, t) then results in

ṽ(0, t) = 0 = e

m

[
k+

ω − k+v0
B + k−

ω − k−v0
C − 1

iω
A

]
. (8.34)

Using the beam dispersion relation (8.26), we obtain a further relation between the
coefficients A, B, and C

0 = k+B − k−C + ωpe

iω
A . (8.35)

We can now use the three equations (8.29), (8.30), and (8.35) to express all other
coefficients by, say, coefficient B, which remains undetermined and describes the
amplitude of the wave. In this way, we obtain the shape of the wave potential inside
the Pierce diode as

Φ̃(x) = B

[
− iω

ωp

k+
k−

(k− + k+)x +
(

e−ik+x − 1
)

−
(

k+
k−

)2 (
e−ik−x − 1

)}
.

(8.36)

This solution will fulfill the remaining boundary condition Φ̃(L , t) = 0 only for cer-
tain combinations of wave frequency, plasma frequency and beam velocity, which
we will derive in the next step. Introducing the abbreviations θ = ωL/v0 and
αP = ωpeL/v0 we obtain

0 = ω

{
θ + i

2

αP

θ

[
θ − αP

θ + αP

(
e−i(θ+αP) − 1

)
− θ + αP

θ − αP

(
e−i(θ−αP) − 1

)]}
.

(8.37)
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This is an implicit relation between θ , which contains the wave frequency ω,
and the Pierce parameter αP. In general, the solutions for θ will be complex and
there will be infinitely many solutions, because of the transcendental nature of the
equation.

8.3.4 The Pierce Modes

The existence diagram for the various modes of the Pierce instability is shown in
Fig. 8.9. A stable mode with frequency ω = 0, i.e., a homogeneous dc current flow
of the beam, is found for αP < π . This electron flow becomes unstable when the
imaginary part of θ becomes positive. This happens for π < αP < 2π and leads to
exponential but non-oscillatory growth of any initial perturbation. A first oscillatory

Fig. 8.9 Real part (solid line)
and imaginary part (dashed
line) of the normalized
frequency θ as a function of
the Pierce parameter αP

αP/π

θ

0

0

5

–5
1 2 3 4

Fig. 8.10 The real (solid line)
and imaginary part (dashed
line) of the wave potential for
the Pierce modes at αP = 1.5,
2.5, 3.5, and 4.5
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unstable Pierce mode is found in the interval 2π < αP < 3π−�αP, which becomes
stable again for higher αP. Then a second oscillatory Pierce mode of even higher
frequency takes over at αP = 3π − �αP and becomes unstable for αP = 3π and
vanishes again for αP ≈ 4π . This pattern repeats with ever higher frequencies.

Although the Pierce modes are not simply standing waves between the end plates,
there is still a distinguishing feature of the modes in terms of the number of maxima
and minima of the wave potential in the interval 0 < x < L . Figure 8.10 shows that
the number of half wavelengths inside the diode increases stepwise as one (αP =
1.5), two (αP = 2.5), three (αP = 3.5) and four (αP = 4.5).

8.3.5 Discussion of the Pierce Model

The Pierce model gives a stable homogeneous electron flow for αP < π . The stabil-
ity is established by a negative imaginary part of ω = θv0/L . Why is there damping
in the Pierce system although the electron motion is collisionless? There is indeed a
loss of energy for any initial perturbation because the electron beam is unmodulated
when it enters the diode and leaves the diode with some density modulation. Hence,
kinetic energy of wave motion is convected out of the system. For a short system
of less than half a wavelength size, this removal is efficient and damps the initial
perturbation. When the system becomes longer, this mechanism becomes inefficient
and instability can occur.

A different interpretation of the Pierce instability is to consider the coupling of
the negative energy wave in the beam with the oscillating surface charges on the
electrodes. This coupling leads to instability as in the beam-plasma or in the Bune-
man instability, but requires a minimum of a full wavelength in the system to fit
into the concept of linear wave-wave coupling.

We have learned that the maximum stable and homogeneous solution of the
Pierce diode is found at αP = π . This sets a limit to the current density, which
can flow without build-up of space charge, as

j = 2π2ε0

(
2e

me

)1/2 U 3/2

L2 , (8.38)

in which U = mev
2
0(2e)−1 is the volt-equivalent of the beam injection energy,

| j | = neev0, and the definition of the electron plasma frequency has been used.
The similarity to the Child-Langmuir law (7.11) is evident. The non-oscillatory
mode that sets in at αP = π is connected to the build-up of space charge in the
middle of the diode. This can be either positive or negative. For negative space
charge, the electron beam is decelerated and increases the negative space charge.
For an initial positive space charge in the center of the diode, the electron beam gets
accelerated and the beam electron density falls below the ion density, thus adding
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Fig. 8.11 The injection of an
electron beam into a vacuum
gap between grounded
electrodes can be considered
as operating two ordinary
diodes back to back with a
reversed current flow in the
left diode

net positive space charge. Both cases are obviously unstable and create a growing,
non-oscillatory space charge.

For comparing the maximum stable current in a Pierce diode with the Child-
Langmuir law of a vacuum diode, we must bear in mind that, in a common vacuum
diode, the electrons start with v = 0 at the cathode and exit with v = v0 at the anode.
Let us consider the injection of beam electrons with v = v0 into the gap between
two grounded electrodes, as shown in Fig. 8.11. At the maximum possible current,
the electrons will nearly come to rest in the middle of the gap (x = L/2) because
they are decelerated by their own space-charge electric field. This leads to a deep
potential minimum Φ ≈ −mv2

0/(2e) in the center. In the right half of the diode,
the electrons are accelerated again by the space-charge field and exit with v = v0 at
x = L . The left half of the gap can be considered as a time-reversed Child-Langmuir
situation. It is no surprise that the same law applies, when v is replaced by −v,
because our derivation of the Child-Langmuir law was based on kinetic energy,
which remains the same under time reversal for a stationary flow. Hence, the beam
injection into a vacuum gap is the same as operating two Child-Langmuir diodes
back to back, each of length L/2. The minimum of the potential in the center of the
gap takes the role of a virtual cathode and the grounded electrodes can be considered
as the anodes. The stability of electron flow injected into a gap between grounded
electrodes was studied e.g. in [187, 188]. The formation of virtual cathodes in front
of thermal emitters will be discussed in Sect. 9.2.2.

Hence, an honest comparison of the maximum current in the neutralized Pierce
diode with a non-neutralized electron flow must bear in mind that in the latter case
the Child-Langmuir law must be written for a diode of length L/2. Hence the ratio
of the maximum currents becomes

jmax,Pierce

jmax,vacuum
= 2π2

16/9
≈ 11 . (8.39)

This is a respectable gain by one order of magnitude for the maximum stable current
in a neutralized diode over a vacuum diode.
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8.4 Macroscopic Instabilities

In this Section, we are interested in plasma instabilities occurring in real space,
called macroinstabilities. These instabilities are characterized by a displacement of
the plasma relative to a magnetic field. Here, the energy principle can be used to
determine the stability of the system. Nevertheless, normal mode analysis will be
the tool to detect the wavelength and growth rate of the unstable modes.

8.4.1 Stable Magnetic Configurations

Consider the magnetic field topologies for a magnetic mirror and a magnetic cusp
in Fig. 8.12. We had seen in (3.27) that the gradient of the magnetic field intensity
points always towards the center of field line curvature. In the center of the mir-
ror field the gradient points inwards whereas, near the magnets, the gradient points
outwards.

Let us now consider the total energy of a small volume of plasma, which consists
of kinetic and magnetic energy, which represents the potential energy for this case,

Wtot = Wkin + B2

2μ0
. (8.40)

When this plasma volume is shifted into a region of weaker magnetic field, the
magnetic energy will decrease accordingly. The existence of such a state of lower
potential energy makes the situation unstable. However, we cannot give the detailed
mechanism, how the plasma manages to get to this lower energy state. We can only
say that the plasma in the center of a mirror field has no stable confinement against
radial displacements. Consider now the field line topology of a magnetic cusp in
Fig. 8.12b. There, the magnetic field increases in all directions and the plasma is in
a stable confinement. Such a situation is called a minimum B configuration.

Fig. 8.12 (a) A magnetic
mirror field is generated by
currents of the same polarity
in the magnets, (b) A
magnetic cusp forms when
the current in one magnet is
reverted. Note that the
direction of the gradient in
magnetic field strength
always points towards the
center of the local field line
curvature
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8.4.2 Pinch Instabilities

The pinch effect was already introduced in Sect. 5.3.4. The pinch effect is not nec-
essarily a homogeneous mechanism. When we assume that the plasma cross section
is reduced at some point, the magnetic pressure at the plasma surface will increase,
because Bϕ = μ0 I (2πa)−1, as shown in Fig. 8.13a. This increased magnetic pres-
sure further reduces the plasma radius at this point, and the plasma column develops
a sausage instability.

The magnetic pressure can also deviate from its equilibrium value, when the
plasma column is curved, see Fig. 8.13b. Because the magnetic field lines are per-
pendicular to the local current direction, the field line density, and the associated
magnetic pressure, is higher on the inner side and lower on the outer side of the
curved plasma column. Hence, the imbalance of magnetic pressure will further dis-
place the column forming a kink.

The sausage and the kink instability can be stabilized by a superimposed longi-
tudinal magnetic field, which is frozen in the plasma. The magnetic field lines have
a tension T = B2/μ0 that tends to straighten the field lines, see Sect. 5.2.2. This
gives a net restoring force that counteracts the instablity from the magnetic pressure
imbalance of the azimuthal magnetic field component, as shown in Fig. 8.13c.

(a) (b) (c)

pmag pmag pmag pmag

Frest

Tmag

Tmag

I I Bz

Fig. 8.13 (a) Sausage instability, (b) kink instability of a pinch plasma. The magnetic pressure
increases when the cross-section shrinks or becomes asymmetric when the plasma column is
curved. (c) The magnetic tension of a superimposed longitudinal magnetic field counteracts the
instability

8.4.3 Rayleigh–Taylor Instability

A cartoon of the Rayleigh-Taylor instability for the equatorial ionosphere is shown
in Fig. 8.14. The unpurturbed plasma boundary is shown by the horizontal dashed
line. The plasma fills the upper halfspace. The magnetic field is perpendicular to
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Fig. 8.14 A cartoon of the
Rayleigh-Taylor instability in
the equatorial ionosphere.
The plasma is the heavy fluid
that rests on the horizontal
magnetic field
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the x − y plane. Under the action of the gravitational force, the ions experience a
g×B drift with a velocity given by (3.14) when we can neglect ion-neutral colli-
sions. The (opposing) drift velocity of the electrons is smaller by a factor me/mi
and will be omitted here. The initial homogeneous equilibrium of the bound-
ary can be understood from the force balance ji × B + nimig = 0, in which
ji = enivg.

For understanding the instability mechanism, we consider an initial sinusoidal
perturbation of the boundary, as indicated by the heavy line. The effect of the g×B
drift is to shift the ions slightly in −x direction, as indicated by the light line. This
generates positive surplus-charges at the surface by an overshoot of ions on the
leading edge and a lack of ions on the trailing edge. These surface charges generate
an E×B motion of the perturbed plasma region, as indicated by the box arrows.
Remember that the E×B drift is the same for electrons and ions and does not lead
to further charge separation. The effect of this secondary drift is to amplify the
original perturbation. This is the mechanism of the gravitational Rayleigh-Taylor
instability.

The Rayleigh-Taylor instability originally described the interface between a
heavy fluid (e.g., water) resting on a lighter fluid (e.g., oil). There, a sinusoidal
perturbation of the interface leads to rising oil blobs and descending water blobs.
In the equatorial ionosphere, the magnetic field is horizontal and the ionospheric
plasma rests on the magnetic field, which represents the lighter fluid. After sunset,
the lower parts of the ionosphere (E-region) rapidly disappear by recombination. At
the bottom of the F-layer (≈ 270 km altitude) a steep density gradient forms, which
can become Rayleigh-Taylor unstable and leads to rising bubbles of low-density
plasma into the high-density F-layer [189–193]. An example of such plasma bubbles
is shown in Fig. 8.15. The bubbles appear as reduced plasma density in a compar-
ison of the density profile during the upleg and downleg of the rocket trajectory.
The upleg intersected the bubble region whereas the downleg traversed unperturbed
plasma. This result was obtained during the DEOS (Dynamics of the Equatorial
Ionosphere Over Shar) rocket campaign [193].

Magnetized plasmas are generally susceptible to Rayleigh-Taylor-like instabili-
ties. Here, the role of gravity can be taken over by the internal kinetic pressure of
the plasma particles, as shown in Fig. 8.16a,b. The plasma surface develops a peri-
odic perturbation ∝ exp(imϕ). The azimuthal mode number m gives the number of
grooves in the plasma column. This pattern resembles the fluted columns in ancient
Greece, as shown in Fig. 8.16c and explains the name flute instability.
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Fig. 8.15 Observation of
plasma bubbles in the
equatorial ionosphere with
Langmuir probes aboard a
sounding rocket (from [193]).
The upleg of the rocket
trajectory intersected three
bubbles (marked 1–3)
whereas the downleg went
through unperturbed plasma.
The fine wiggle seen on the
downleg results from the
wake of the spinning rocket

Fig. 8.16 Flute instability of a magnetized plasma column as a generalized Rayleigh-Taylor mech-
anism. (a) Unperturbed plasma column, (b) m = 4 mode, (c) fluted Greek columns (Photo: J. Piel)
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The Basics in a Nutshell

• Plasma instabilities fall into two classes, macroscopic instabilities in real
space, like the Rayleigh-Taylor instability, and microinstabilities in veloc-
ity space, like the beam-plasma instability.

• The directed flow of a group of fast electrons (beam) can excite electrostatic
waves near the electron plasma frequency. This beam-plasma instability
has a tremendous growth rate, which depends on (nb/np)

1/3.
• The instability of the slow wave can be understood from the concept of

negative mass or negative energy waves.
• In a system of finite length (Pierce diode) the maximum electron current is

limited by the onset of purely-growing, non-oscillating disturbances of the
electron beam.

Problems

8.1 For which values of the coefficients a and b has the differential equation

ẍ + aẋ + bx = 0 .

stable and unstable solutions? Draw a stability map b = f (a) and mark regions with
damped oscillatory, overdamped, unstable oscillatory and purely growing modes.

8.2 Discuss the instability of a system with counter-streaming electron and positron
beams of equal density ∝ ω2

b and equal but opposite velocities v and −v. Write
down the dielectric function for this system in analogy to (8.3). Find the four solu-
tions of ε(ω, k) = 0. Show that there is a region k < kcrit with two real and a pair
of conjugate complex solutions. Plot the growth rate of this instability vs. kv/ωb.

8.3 Perform the missing steps that lead to (8.23) and (8.24).



Chapter 9
Kinetic Description of Plasmas

“All right”, said the Cat; and this time it vanished quite
slowly, beginning with the end of the tail, and ending with the
grin, which remained some time after the rest of it had gone.

Lewis Carroll, Alice in Wonderland

In the previous chapters, the description of the plasma state was refined step by step.
In the single-particle model, we were interested in the motion of individual particles
in typical magnetic field configurations, but the interaction between the particles and
the modification of the fields by the presence and motion of charged particles was
neglected. In the fluid model, we had considered the average behavior of particles
filling a small volume of space. In this approximation, only moments of a shifted
Maxwell distribution, like mean flow velocity or gas temperature, were retained,
but, by combining with Maxwell’s equations, the model became self-consistent. The
fluid model goes beyond the single-particle model in that pressure effects are now
included. This fluid model, and its formulation in terms of MHD-equations, became
capable to describe the combined macroscopic motion of plasma and magnetic field
lines. A first attempt to deal with non-Maxwellian velocity distributions was the
introduction of a beam-plasma system, which generates self-excited electrostatic
waves near the electron plasma frequency.

When we go to high-temperature plasmas, the thermal effects are incompletely
described by the concept of pressure. Rather, individual groups of particles in the
distribution function have quite different interactions with a wave. In the present
Chapter, we will give a brief introduction to the kinetic description of a plasma
with an arbitrary velocity distribution by means of the Vlasov equation. This is
the third stage of refinement in the description of the plasma state, as sketched in
Fig. 9.1. Here, the emphasis is on velocity-space effects like the collisionless Landau
damping of waves. As a second example, we will study the relationship between
single-particle motion and kinetic theory for space-charge-limited electron flow in
diodes. At last, particle simulation as a means of kinetic plasma description will be
briefly discussed.

Besides this hierarchy of models, which can be sorted according to plasma tem-
perature and collisionality, there are additional ways of plasma description, such
as treating the plasma as a dielectric. We have seen that plasmas support various
types of waves, among them light waves, plasma oscillations, ion sound waves or
Alfvén waves. Depending on the necessary refinement, we can combine the idea

A. Piel, Plasma Physics, DOI 10.1007/978-3-642-10491-6_9,
C© Springer-Verlag Berlin Heidelberg 2010
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Fig. 9.1 The hierarchy
of plasma models
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of a dielectric with any of the three levels of plasma description. In particular, we
will see in kinetic theory, what the concepts of cold plasma and warm plasma really
mean.

9.1 The Vlasov Model

A complete description of a plasma must on the one hand include fluid aspects
and self-consistent fields, and on the other hand the velocity distributions of the
particle species. Such a concept is developed in kinetic theory. In this Section, we
will abandon the true particle positions, but use the probability distribution in real
space and in velocity space. For collisionless plasmas this can be done in terms of
the Vlasov model that was introduced, in 1938, by Anatoly Vlasov (1908–1975).

9.1.1 Heuristic Derivation of the Vlasov Equation

In the fluid model we became acquainted with the concept of replacing particle
trajectories by a statistical description of the mean properties of the plasma particles
within small fluid elements. There, we had defined the mass density ρm(r, t) and
the flow velocity u(r, t), which are connected by the conservation of mass

∂

∂t
ρm(r, t) + ∇ · [ρm(r, t)u(r, t)] = 0 . (9.1)

In kinetic theory, it is no longer sufficient to consider a mean flow velocity, but
the evolution of the number of particles in a certain velocity interval d3v about
a velocity vector v has to be explicitely described. The mass �m inside a small
volume ΔxΔyΔz of real space was defined by

�m = ρm(r, t)�x�y�z . (9.2)
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In analogy, we now subdivide velocity space into small bins, �vx�vy�vz , and
consider the number of particles �N (α) of species α inside an element of a six-
dimensional phase space that is spanned by three spatial coordinates and three
velocity coordinates

�N (α) = f (α)(r, v, t)�x�y�z �vx�vy�vz . (9.3)

Taking the limit of infinitesimal size, d3r d3v, needs a short discussion. When phase
space is subdivided into ever finer bins, the problem arises that, in the end, we will
find one or no plasma particle inside such a bin. The distribution function f (α)

would then become a sum of δ-functions

f (α)(r.v, t) =
∑

k

δ(r − rk(t))δ(v − vk(t)) , (9.4)

which represents the exact particle positions and velocities. However, then we had
recovered the problem of solving the equations of motion for a many-particle sys-
tem, of say 1020 particles; instead, we are searching for a mathematically simpler
description by statistical methods.

For this purpose, we start with finite bins, �x�y�z �vx�vy�vz , of macro-
scopic size, which contain a sufficient number of particles to justify statistical tech-
niques. Then we define a continuous distribution f ( j) on this intermediate scale and
require that f (α) remains continuous in taking the limit. One could imagine that this
is equivalent to grind the real particles into a much finer “Vlasov sand”, where each
grain of sand has the same value of q/m (which is the only property of the particle
in the equation of motion) as the real plasma particles, and is distributed such as
to preserve the continuity of f (α). This approach is called the Vlasov picture. This
subdivision comes at a price, because we loose the information of the arrangement
of neighboring particles, i.e., correlated motion or collisions. Hence, the Vlasov
model does only apply to weakly coupled plasmas with � � 1.

A different way to give a kinetic description will be introduced below in Sect. 9.4
by combining the particles inside a mesoscopic bin into a superparticle of the same
q/m. Then we may end up with only 104–105 superparticles for which the equations
of motion can be solved on a computer. However, forming superparticles enhances
the grainyness of the system and the particles inside a superparticle are artificially
correlated.

The function f (α) has the following normalisation,

N (α) =
∫∫

f (α)(r, v, t) d3r d3v , (9.5)

where N (α) is the total number of particles of species α. The particle density in real
space, the mass density, and the charge density then become

n(α)(r, t) =
∫

f (α)(r, v, t)d3v (9.6)
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ρm(r, t) =
∑
α

m(α)n(α)(r, t) (9.7)

ρ(r, t) =
∑
α

q(α)n(α)(r, t) . (9.8)

9.1.2 The Vlasov Equation

We now seek an equation of motion for the distribution function f (r, v, t) that gen-
eralizes the continuity equation (9.1). Let us first recall that, in the fluid model,
u(r, t) represents a physically measurable variable. Now, the velocity v becomes a
coordinate of velocity space. The difference lies in the fact that, in the fluid model,
the mean flow velocity is attached to a group of particles whereas in the kinetic
model the particles have this velocity because they happen to be in a bin with the
label v. However, when we arbitrarily select a small volume of phase space d3r d3v

about the vector (r, v), the particles in this bin form a group that behaves like a fluid
with the streaming velocity v.

To simplify our arguments, we consider the phase space of a one-dimensional
system, which has only the coordinates (x, vx ). The particle balance within a phase
space volume �x�vx is determined by the difference of inflow and outflow in
real space and, in addition, by acceleration and deceleration (see Fig. 9.2). For the
moment, we drop the superscript (α) and consider only one of the plasma species,
e.g., the electrons. Since f �x�vx is the number of particles in that small phase-
space element, we can write in analogy to the continuity equation (9.1)

∂ f

∂t
= − ∂

∂x
( f vx ) − ∂

∂vx
( f a) , (9.9)

in which f vx is the flux in real space and f a the flux in vx direction caused by
an acceleration a, as indicated by the arrows in Fig. 9.2. Here, we have neglected
creation and annihilation of charge carriers by ionization and recombination, as well

Fig. 9.2 The Vlasov equation
describes the flow of a
probability fluid in phase
space. A gain within the
shaded phase-space volume
�V = �x�v can be
achieved by a flux imbalance
(horizontal arrows) in real
space (x) or by a difference
of acceleration (vertical
arrows) in velocity space (v)
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as collisions that kick particles from one phase-space cell to another cell at far
distance. Noting that the phase-space coordinate vx is independent of x and that the
x-component of the Lorentz force is independent of vx , we have

∂ f

∂t
+ vx

∂ f

∂x
+ a

∂ f

∂vx
= 0 . (9.10)

Generalizing to three space coordinates and three velocities, we obtain

∂ f

∂t
+ v · ∇r f + a · ∇v f = 0 . (9.11)

Here, we have introduced the short-hand notations ∇r = (∂/∂x, ∂/∂y, ∂/∂z) and
∇v = (∂/∂vx , ∂/∂vy, ∂/∂vz). The particle acceleration a is determined by the elec-
tric and magnetic fields, which are the sum of external fields and internal fields from
the particle currents

a = q

m
(E + v × B) . (9.12)

It must be emphasized here that the internal electric and magnetic fields result from
average quantities like the space charge distribution ρ = ∑

α qα

∫
fαd3v and the

current distribution j = ∑
α qα

∫
vα fαd3v, which are both defined as integrals over

the distribution function. In this sense, the fields are average quantities of the Vlasov
system and any memory of the pair interaction of individual particles is lost. This is
equivalent to assuming weak coupling between the plasma particles and neglecting
collisions.

Combining (9.11) and (9.12) we obtain the Vlasov equation

∂ f

∂t
+ v · ∇r f + q

m
(E + v × B) · ∇v f = 0 . (9.13)

There are individual Vlasov equations for electrons and ions.

9.1.3 Properties of the Vlasov Equation

Before discussing applications of the Vlasov model, we consider general properties
of the Vlasov equation:

1. The Vlasov equation conserves the total number of particles N of a species,
which can be proven, for the one-dimensional case, as follows:

∂N

∂t
= ∂

∂t

∫∫
f dxdv = −

∫∫
v
∂ f

∂x
dxdv −

∫∫
a
∂ f

∂v
dxdv
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= −
∞∫

−∞
dv

⎧⎨
⎩
[
v f

]x=∞
x=−∞ −

∞∫
−∞

f
dv

dx
dx

⎫⎬
⎭

−
∞∫

−∞
dx

⎧⎨
⎩
[
a f

]v=∞
v=−∞ −

∞∫
−∞

f
da

dv
dv

⎫⎬
⎭ = 0 . (9.14)

Here we have used that the expressions in square brackets vanish, because f
decays faster than x−2 for x → ±∞, otherwise the total number of particles
would be infinite. Similarly, f decays faster as v−2 for v → ±∞, otherwise the
total kinetic energy would become infinite. Further, dv/ dx = 0, because v and
x are independent variables, and da/ dv = 0 because the x component of the
Lorentz force does not depend on vx .

2. Any function, g[ 1
2 mv2 + qΦ(x)], which can be written in terms of the total

energy of the particle, is a solution of the Vlasov equation (cf. Problem 9.1).
3. The Vlasov equation has the property that the phase-space density f is constant

along the trajectory of a test particle that moves in the electromagnetic fields E
and B. Let [x(t), v(t)] be the trajectory that follows from the equation of motion
mv̇ = q(E + v × B) and ẋ = v, then

d f (x(t), v(t), t)

dt
= ∂ f

∂t
+ ∂ f

∂x
· dx

dt
+ ∂ f

∂v
· dv

dt

= ∂ f

∂t
+ ∂ f

∂x
· v + ∂ f

∂v
· q

m
(E + v × B) = 0 . (9.15)

4. The Vlasov equation is invariant under time reversal, (t → −t), (v → −v). This
means that there is no change in entropy for a Vlasov system.

9.1.4 Relation Between the Vlasov Equation and Fluid Models

Obviously, the Vlasov model is more sophisticated than the fluid models in that now
arbitrary distribution functions can be treated correctly. The fluid models did only
catch the first three moments of the distribution function: density, drift velocity and
effective temperature. Does this mean that the Vlasov model is just another model
that competes with the fluid models in accuracy?

The answer is that the collisionless fluid model is a special case of the Vlasov
model. The fluid equations can be exactly derived from the Vlasov equation by
taking the appropriate velocity moments for the terms of the Vlasov equation. We
give here two examples for this procedure and restrict the discussion to the simple
1-dimensional case.
Integrating the individual terms of the Vlasov equation over all velocities gives

0 = ∂

∂t

∫
f dv + ∂

∂x

∫
v f dv + a

[
f
]∞
−∞ = ∂n

∂t
+ ∂

∂x
(nu) , (9.16)



9.2 Application to Current Flow in Diodes 225

which is just the continuity equation (5.8). Here, u = (1/n)
∫
v f dv is again the

fluid velocity. Likewise, we can multiply all terms by mv and perform the integration
to obtain

0 = ∂

∂t

∫
mv f dv + ∂

∂x

∫
v2 f dv + a

∫
v
∂ f

∂v
dv

= ∂

∂t

∫
mv f dv + ∂

∂x

[∫
m(v − u)2 f dv + nmu2

]

+ a

([
v f

]∞
−∞ −

∫
f

dv

dv
dv

)

= ∂

∂t
(nmu) + ∂p

∂x
+ u

∂

∂t
(nmu) + (nmu)

∂u

∂x
− nma

= nm

(
∂u

∂t
+ u

∂u

∂x

)
+ ∂p

∂x
− nma , (9.17)

which is the momentum transport equation (5.28). In the second line, we have used
Steiner’s theorem for second moments of a distribution, and in the last line, we have
used the continuity equation, which cancels two terms. p = ∫

m(v − u)2 f dv is the
kinetic pressure.

By multiplying with vn and integrating the terms in the Vlasov equation, we
can define an infinite hierarchy of moment equations. Note that each of these equa-
tions is linked to the next higher member in the hierarchy: The continuity equation
links the change in density to the divergence of the particle flux. The momentum
equation describing the particle flux invokes the pressure gradient, which is defined
in the equation for the third moments, and so on. Hence, the fluid model must be
terminated by truncation. Instead of using a third moment equation that describes
the heat transport, one is often content with using an equation of state, p = nkBT ,
to truncate the momentum equation.

9.2 Application to Current Flow in Diodes

As a first example, we use the Vlasov equation to study the steady-state current
flow in electron diodes under the influence of space charge. The difference from the
treatment of the Child-Langmuir law in Sect. 7.2 is that we now allow for a thermal
velocity distribution of the electrons at the entrance point of a vacuum diode.

Before starting with the calculation, we summarize our expectations. The elec-
trons are in thermal contact with a heated cathode at x = 0, and only electrons
with a positive velocity leave the cathode. An anode with a positive bias voltage
is assumed at some distance x = L . Close to the cathode, the velocity distribution
function will be a half-Maxwellian with a temperature determined by the cathode
temperature. The limiting current from the Child-Langmuir law corresponds to the
situation that the electric field at the cathode vanishes. When the emitted current is



226 9 Kinetic Description of Plasmas

lower than the limiting current, the electric field force on an electron is positive and
all electrons can flow to the anode. However, when the emitted current is higher than
the limiting current, the electric field at the cathode is reversed because a significant
amount of negative space charge is formed in front of the cathode. Such a situation
with a potential minimum is shown in Fig. 9.3.

Now, only those electrons can overcome the potential barrier that have a suffi-
ciently high initial velocity. Electrons with lower starting velocity will be reflected
back to the cathode. Some sample trajectories in (x − v) phase space are shown
for transmitted and reflected populations. The velocity distribution can be consid-
ered as being partitioned into intervalls of equal velocity, which propagate through
the system like the test particles. The separatrix (dotted line in Fig. 9.3) between
the populations of free and trapped electrons is defined by v = 0 at the potential
minimum.

Fig. 9.3 A combination of the half-Maxwellian of the electrons at the cathode of a vacuum diode
with the trajectories in phase space (x ,v). The potential distribution Φ(x) is shown as an overlay
to the phase space. Only part of the electrons can overcome the potential minimum, the others are
reflected back to the cathode

9.2.1 Construction of the Distribution Function

With these prerequisites, we can now state the problem of a stationary flow in terms
of the Vlasov and Poisson equations, which we write down for a one-dimensional
system

v
∂ f (x, v)

∂x
+ e

me

∂Φ

∂x

∂ f (x, v)

∂v
= 0 (9.18)

∂2Φ

∂x2
= e

ε0

∞∫
−∞

f (x, v) dv . (9.19)
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The phase space trajectories of test particles form the characteristic curves of the
Vlasov equation and result from integrating the equation of motion for

dx

dτ
= v and

dv

dτ
= e

m

dΦ

dx
. (9.20)

Here we have introduced the transit time τ , which must be distinguished from the
absolute time. The considered problem of a stationary flow is independent of abso-
lute time. However, for each electron an individual time τ elapses after injection
at the cathode. This time τ can be considered as a series of tick marks along the
characteristic curve. The trajectory v(x) follows by eliminating the parameter τ

from the solution of (9.20).
Our initial remarks on the properties of the Vlasov equation are now very helpful.

Since the value of the distribution function is constant along a phase-space trajec-
tory, the construction of the distribution function at any place x inside the diode is
reduced to a mapping problem. This mapping is accomplished by the conservation
of total energy for a test electron

1

2
mev

2 − eΦ = 1

2
mev

2
0 − eΦ0 , (9.21)

with v0 the initial velocity at the cathode and Φ0 the cathode potential. We can set
Φ0 = 0 for convenience. Then the mapping of velocities reads

v(Φ, v0) = ±
(
v2

0 + 2eΦ

me

)1/2

. (9.22)

This means, that for a given electric potential Φ(x), we can immediately give the
starting velocity v0 and read the corresponding value of the Maxwellian distribution
that we have postulated for a position immediately before the cathode. The two
signs of the velocity in (9.22) represent the forward (+) and backward (−) flows of
electrons.

We define the velocity distribution at the cathode as the half-Maxwellian

f (0, v0) = A exp

(
− mev

2
0

2kBTe

)
. (9.23)

The normalization A = nem1/2
e (2πkBTe)

−1/2 is that of a full Maxwellian. This
choice ensures that ne approximately represents the density of trapped electrons,
when the potential minimum is very deep and most of the emitted electrons are
reflected.

Those electrons that have a nearly-vanishing positive velocity at the potential
minimum, will gain energy from the electric field. This group of electrons repre-
sents the lowest velocity in the transmitted electron distribution and defines a cut-off
velocity vc for the distribution
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vc =
{

2e

me
[Φ(x) − Φmin]

}1/2

. (9.24)

Then, we find the positive half of the distribution function as

f+(x, v) = A exp

(
eΦ(x)

kBTe

)
exp

(
− mev

2

2kBTe

){
Θ(v − vc) ; x > xmin
Θ(v) ; 0 < x < xmin

.

(9.25)
Θ is the Heaviside step function

Θ(x) =
{

0 : x ≤ 0
1 : x > 0

. (9.26)

For x > xmin, the distribution function is a cut-off Maxwellian with a density mod-
ified by the Boltzmann factor exp[eΦ/(kBTe)]. All positive velocities are found in
the region between cathode and potential minimum.

Negative velocities are only found for 0 < x < xmin. However, the distribution
only extends up to the negative cut-off velocity because all electrons with a higher
velocity have escaped towards the anode. Therefore, the distribution of negative
velocities reads in this region

f−(x, v) = A exp

(
eΦ(x)

kBTe

)
exp

(
− mev

2

2kBTe

)
Θ(v + vc)[1 − Θ(v)] . (9.27)

The distribution functions before and behind the potential minimum are shown in
Fig. 9.4.

Fig. 9.4 (a) Electron
distribution function f+
beyond the potential
minimum. (b) Distribution
function f+ + f− between
cathode and the potential
minimum. The cut-off
velocity vc is determined by
the condition to overcome the
potential barrier
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9.2.2 Virtual Cathode and Current Continuity

The current density at the potential minimum is defined by the integral over positive
velocities, j = −e

∫
v f+(v) dv. A simple calculation shows that

j = −ene exp

(
eΦmin

kBTe

)(
kBTe

2πme

)1/2

. (9.28)

This expression contains the density of the full Maxwellian at the cathode multiplied
by the Boltzmann factor (which gives the density reduction at the potential mini-
mum) and the mean velocity of a half-Maxwellian distribution, see Problem 9.2. The
reader may notice that the result for Φmin = 0 is identical to the electron saturation
current (7.29).

Hence, the starting distribution at the potential minimum is again a half-Max-
wellian and the potential minimum acts as a virtual cathode that feeds the r.h.s.
of the diode. It can be easily shown (see Problem 9.3) that the electron current
density is conserved in this region. Remembering that the phase space density is
also conserved for the characteristic that has v = 0 at the virtual cathode, this seems
puzzling at first glance because the electron velocity increases on the way towards
the anode. Inspecting Fig. 9.5 shows that the distribution function narrows on the
velocity scale with increasing mean velocity and this effect compensates for the
acceleration.

Fig. 9.5 Electron distribution
functions between the virtual
cathode (potential minimum)
and the anode at various
normalized potential values
e(Φ − Φmin)/(kBTe)

9.2.3 Finding a Self-Consistent Solution

Up to now, we have assumed a kind of prescribed potential distribution that pos-
sesses a single minimum of negative potential and reaches positive values on the
anode side of the diode. However, we were neither able to give the position of
the potential minimum nor its depth. The true potential shape results from solving
Poisson’s equation (9.19) with the distribution functions given by (9.25) and (9.27),
which makes the potential self-consistent with the distribution function. This gives
the set of equations for the regions I (0 ≤ x ≤ xmin) and II (x > xmin)
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d2Φ

dx2

∣∣∣∣
I

= e

ε0

∞∫
−∞

( f+ + f−) dv ; d2Φ

dx2

∣∣∣∣
I I

= e

ε0

∞∫
−∞

f+ dv (9.29)

It is customary to introduce normalized quantities for a later numerical solution of
the problem, η = eΦ/(kBTe), ξ = x/λDe, λDe = [ε0kBTe/(nee2)]1/2, which gives

d2η

dξ2

∣∣∣∣
I

= eη√
π

∞∫

−√
η−ηmin

e−t2
dt ; d2η

dξ2

∣∣∣∣
I I

= eη√
π

∞∫

+√
η−ηmin

e−t2
dt . (9.30)

The integral on the r.h.s. can be expressed in terms of the error functions

erf(x) = 2√
π

∞∫
0

e−t2
dt and erfc(x) = 1 − erf(x) , (9.31)

which results in the compact system

d2η

dξ2

∣∣∣∣
I

= eη

2

[
1 + erf

(√
η − ηmin

)]
(9.32)

d2η

dξ2

∣∣∣∣
I I

= eη

2
erfc

(√
η − ηmin

)
. (9.33)

9.2.4 Discussion of Numerical Solutions

The solution of this problem is straightforward, but involves implicit definitions of
various quantities. The shape of the curves η(ξ) is completely determined by choos-
ing the value of the normalized minimum potential ηmin. Fig. 9.6a shows examples
for ηmin = −0.5 and ηmin = −1. For the latter starting point, we can first perform
a numerical integration of (9.32) and find the position of the cathode (η = 0) at
ξ1. The integration of (9.33) gives an increasing potential that intersects the anode
potential, say at ηa = 3. This defines the normalized anode position ξ2. Note that
we would obtain different values of ξ1 and ξ2 for the integration from ηmin = −0.5.

How do we find ηmin for a given problem? Let us assume that the electron tem-
perature Te is given by the cathode temperature. Then the emission current of the
cathode follows from Richardson’s law (see Sect. 11.1.5)

| jem| = ART 2 exp

(
WR

kBT

)
, (9.34)

in which WR is the effective work function of the emitter. We can use (9.28),
with Φmin = 0, to define the electron density ne and the Debye length λDe.
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Fig. 9.6 (a) Normalized potential shape in a diode with thermal emitter for two values of the
minimum potential, ηmin = −0.5 and ηmin = −1. (b) Dependence of the minimum position ξmin
on the minimum potential ηmin

Equation (9.28) then gives the minimum potential as ηmin = ln( jem/j). The
remaining steps are to specify the normalized anode position from the absolute
diode length, L = (ξ2 − ξ1)λDe, and to read the anode bias from a curve similar
to Fig. 9.6a.

The method described above can be applied to many systems with steady colli-
sionless electron flows, such as low-pressure arc discharges, Q-machines, thermionic
converters, or neutralized diodes. Particular emphasis was laid on the simplicity of
constructing solutions by characteristics, which are the trajectories of test particles.

9.3 Kinetic Effects in Electrostatic Waves

The second example for kinetic phenomena in plasmas is the discussion of
small-amplitude electrostatic waves in unmagnetized plasmas. These problems are
one-dimensional and the mathematical apparatus will not overshadow the physical
content. Kinetic effects can be expected from the temperature of the plasma con-
stitutents. One of these effects is Landau damping. Other kinetic effects may arise
from a more general shape of the distribution function and as a result the waves can
become unstable.

9.3.1 Electrostatic Electron Waves

In this Section we search for electron waves near the electron plasma frequency. In
this frequency regime, the ions do not participate in the wave motion and form
a neutralizing background only. The normal mode analysis starts from splitting
the electron distribution function into a homogeneous (∂/∂x = 0) and stationary
(∂/∂t = 0) distribution fe0(v), which we assume to be a Maxwellian, and a small
superimposed wave-like pertubation fe1(x, v, t)
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fe(x, v, t) = fe0(v) + fe1(x, v, t) (9.35)

fe0(v) = ne0

(
me

2πkBTe

)1/2

exp

{
− mev

2

2kBTe

}
(9.36)

fe1 = f̂e1 exp[i(kx − ωt)] . (9.37)

Linearizing the Vlasov equation, and using the wave representation (9.36), we
obtain

∂ fe1

∂t
+ v

∂ fe1

∂x
− e

me
E1

∂ fe0

∂v
= 0 (9.38)

−iω f̂e1 + ikv f̂e1 − e

me
Ê1

∂ fe0

∂v
= 0 , (9.39)

which yields the perturbed electron distribution function as

f̂e1 = i
e

me

∂ fe0/∂v

ω − kv
Ê1 . (9.40)

The vanishing of the denominator (ω − kv) causes a singularity in the perturbed
distribution function, which we will have to address carefully. The electrons with
v ≈ ω/k will be called resonant particles. In Sect. 8.1.2 we had already seen the
particular role of resonant particles for beam-plasma interaction.

The perturbed electron distribution function represents a space charge

ρ = e

⎛
⎝ni −

∞∫
−∞

fe dv

⎞
⎠ = −e

+∞∫
−∞

fe1 dv , (9.41)

in which the unperturbed Maxwellian of the electrons is just neutralized by the ion
background. Only the fluctuating part of the electron distribution contributes to the
space charge. The relationship between the wave electric field and the perturbed
distribution function is established by Poisson’s equation, which takes the form

ik Ê1 = ρ

ε0
= 1

ik
Ê1

ω2
pe

ne0

+∞∫
−∞

∂ fe0/∂v

ω/k − v
dv . (9.42)

This equation can be rewritten in terms of the dielectric function ε(ω, k) with the
result ik Ê1 ε(ω, k) = 0, which requires that ε(ω, k) = 0 for non-vanishing wave
fields. This is the dispersion relation for electrostatic electron waves. It now contains
the dielectric function from kinetic theory
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ε(ω, k) = 1 + ω2
pe

k2

+∞∫
−∞

1

ne0

∂ fe0/∂v

ω/k − v
dv (9.43)

with the derivative of the Maxwellian

∂ fe0

∂v
= −ne0

2v√
πv3

Te

exp

(
− v2

v2
Te

)
. (9.44)

9.3.2 The Meaning of Cold, Warm and Hot Plasma

When the mean thermal speed of the electrons is sufficiently small compared to the
phase velocity of the wave (see Fig. 9.7), the contribution from resonant particles
in (9.43) is attenuated by the exponentially small factor in the numerator. Then, the
main contributions to the integral in (9.43) originate from the interval [−vTe, vTe],
where we can expand the function (ω/k − v)−1 into a Taylor series

1

ω/k − v
= k

ω
+ k2

ω2
v + k3

ω3
v2 + k4

ω4
v3 + · · · . (9.45)

The integral (9.43) can be solved analytically using the relations

+∞∫
−∞

x2ne−ax2 = 1 × 3 × · · · × (2n − 1)

(2a)n

(π

a

)1/2
(9.46)

+∞∫
−∞

x2n+1e−ax2 = 0 . (9.47)

Fig. 9.7 Relation between
phase velocity and width of
the electron distribution
function for a (a) cold
plasma, (b) warm plasma,
and (c) hot plasma
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Using terms up to fourth order in the phase velocity, we obtain

ε(ω, k) = 1 − ω2
pe

ω2
− 3

2

ω2
pe

ω4
k2v2

Te = 0 . (9.48)

The first two terms represent the cold-plasma result (6.45), which we had obtained
from the single-particle model. The third term gives a thermal correction that leads
to the dispersion relation of Bohm-Gross waves (6.68)

ω2 = ω2
pe + γek2 kBTe

me
. (9.49)

Note that we did not have to specify the coefficient γe = 3 for a one-dimensional
adiabatic compression. Rather, the adiabaticity of the process followed from the
limit vT,e � ω/k and was obtained from the coefficient for the lowest-order thermal
correction in (9.46).

Summarizing, the cold-plasma approximation uses the lowest (non-vanishing,
i.e., second) order in the expansion of the dielectric function ε(ω, k) in powers of
kvTe/ω. A warm plasma description retains the next-higher non-vanishing terms,
which are fourth order. Our Taylor expansion breaks down for hot plasmas, which
are characerized by ω/k ≤ ve. Then, contributions from resonant particles will play
a significant role. For the Bohm-Gross modes in Fig. 9.8, the resonant particles lead
to wave damping, which we will discuss in the next paragraph.

Fig. 9.8 Real and Imaginary
part of the wave frequency
for the Bohm-Gross modes.
The imaginary part describes
the kinetic damping
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9.3.3 Landau Damping

Let us now allow for phase velocities in the vicinity of the thermal velocity and have
a closer look at resonant particles. Up to now, we have only considered the Cauchy
principal value of the integral (denoted by the symbol P)

ω2
pe

k2 P

+∞∫
−∞

∂ fe0/∂v

ω/k − v
dv ≈ ω2

pe

ω2 + 3

2

ω2
pe

ω4 k2v2
Te + · · · (9.50)

Integrals of the type

∞∫
−∞

F(u)

v − u
dv (9.51)

require a treatment in the complex v-plane. In our case, u = ω/k, will become a
complex phase velocity and ω a complex frequency. The Soviet physicist Lev Davi-
dovich Landau (1908–1968) has shown [194] that the proper analytic continuation
of the integral (9.51) is found by deforming the integration path in such a way that
it passes under the singularity at v = u. This integration path is called the Landau-
contour and is shown in Fig. 9.9 for the cases of a growing wave (Im(u) > 0), an
undamped wave (Im(u) = 0) and a damped wave (Im(u) < 0).

In the following, we assume that the imaginary part of u is small compared to the
real part. Therefore, in evaluating the integral in (9.43) we have to use the Cauchy
principal value but can use the contribution from the semi-circle in the Landau con-
tour, as shown in Fig. 9.9b. The latter is one half of the residue at the pole. We then
obtain

0 = 1 − ω2
pe

k2

⎛
⎝P

∞∫
−∞

1

ne0

∂ fe0/∂v

v − ω/k
dv + iπ

1

ne0

∂ fe0

∂v

∣∣∣∣
v=ω/k

⎞
⎠ (9.52)

Fig. 9.9 (a) The Landau contour L for Im(u) > 0 follows the Re(v) axis. (b) The Landau contour
passes with a semi-circle below the pole Im(u) = 0. (c) The Landau contour encircles the pole for
Im(u) < 0
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The contribution from the residue makes the dielectric function complex and we can
expect that the solution ω will also be complex. Because of the assumed smallness of
the imaginary part of ω, we can use perturbation methods. For the Cauchy principal
value, we can use the cold plasma result and obtain

0 = 1 − ω2
pe

ω2
− iπ

ω2
pe

k2

1

ne0

∂ fe0

∂v

∣∣∣∣
v=ω/k

. (9.53)

Solving for ω and expanding the square root yields

ω = ωpe

[
1 + i

π

2

ω2
pe

k2

1

ne0

∂ fe0

∂v

∣∣∣∣
v=ω/k

]
. (9.54)

For calculating the derivative of the Maxwellian, however, we have to use the full
phase velocity of the Bohm-Gross wave, ωR ≈ ωpe[1 + 3

2 k2λ2
De], in the exponent,

but it is sufficient to use the cold plasma result in the forefactor. This gives Landau’s
result for the imaginary part of the wave frequency,

Im(ω) = −
√

π

8

ωpe

k3λ3
De

exp

(
− 1

2k2λ2
De

− 3

2

)
, (9.55)

which is shown in Fig. 9.8. The electrostatic electron waves are damped for short
wavelength, kλDe > 0.4, and the reason for this damping is the resonant interaction
with a part of the Maxwell distribution.

This damping mechanism is called Landau damping or collisionless damping.
Landau’s arguments were mostly mathematical in nature in that he used a well-
posed initial-value-problem that he treated by means of Laplace transform. Vlasov’s
normal mode analysis, which we have used above to find the principal value of the
dielectric function, cannot predict this kind of wave damping. Only the contour
deformation according to the rules of Laplace transform yields damped waves. In
the calculation above, we have, for simplicity, incorporated the Landau contour into
a normal mode analysis.

At the time of Landau’s discovery, experiments on plasma waves were ham-
pered by collisional damping, which masked the predicted effect. It took the tech-
nical progress of two decades until, in 1966, Landau damping could be verified
for Bohm-Gross waves by Malmberg and Wharton [195]. This historic result is
shown in Fig. 9.10. For this experiment, a long plasma column with axial magnetic
field was used. The wave was launched by a fine wire probe. The wave signal was
detected by an interferometric technique with a second movable wire probe. The
Landau damping rate is seen by the exponential decay of the wave amplitude.

Independent from experimental verification, the physical mechanism behind
Landau damping was puzzling. In 1961, John Dawson (1930–2001), presented an
analysis for the energy exchange between resonant particles and the wave [161].
Many attempts were made during the 60 years after Landau’s seminal paper, to
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Fig. 9.10 A sketch of the
experimental result of
Malmberg and Wharton
on Landau damping of
Bohm-Gross waves.
(a) power of wave signal
received by an axially
movable probe on a
logarithmic scale.
(b) interferometer signal on a
linear scale
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clarify the Landau mechanism, e.g., [196–203]. Other authors reexamined the Lan-
dau problem for simplified tutorial purposes [204–207].

The appearance of wave damping in a collisionless plasma is an astonishing
result, since we have stated before that the Vlasov equation conserves entropy.
This apparent contradiction had puzzled many researchers and it was only in the
late 1960s, that the reversibility of the Landau process was demonstrated in terms of
plasma wave echoes [208–210], which we will discuss in Sect. 9.3.6. Before doing
so, we will give a second example for Landau damping.

9.3.4 Damping of Ion-Acoustic Waves

Our treatment of the ion-acoustic wave in Sect. 6.5.3 was based on a fluid model,
which retained the influence of electron and ion temperature by appropriate pressure
gradients. In the preceding kinetic treatment of the Bohm-Gross modes, we have
learned that the real part of the dielectric function is identical in the fluid model
that includes pressure forces, and in the kinetic treatment. Therefore, we can use
the dispersion relation (6.76) for calculating the Landau damping of ion-acoustic
waves.

The Landau method can be applied when the damping rate ωI of the wave is much
smaller than the wave frequency ωR. A small value of Landau damping can be found
when the phase velocity of the wave avoids the region of the thermal velocity where
the distribution function has its steepest gradient in velocity space. This condition
can always be met by the electrons, because vϕ ≈ (kBTe/mi)

1/2 � (kBTe/me)
1/2 is

ensured by the electron-to-ion mass ratio. Landau damping by ions becomes impor-
tant, when Te ≈ Ti, as in Q-machine plasmas, where many investigations of this
kind were made. From (6.76) the proper phase velocity of the ion-acoustic wave is
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vϕ =
(
γikBTi

mi
+ kBTe

mi

)1/2

. (9.56)

Then the phase velocity vϕ is not so far from the ion thermal speed (8kBTi/πmi)
1/2.

This situation is sketched in Fig. 9.11. Weakly damped ion-acoustic waves require
Te 
 Ti. For these modes, we can use Landau’s treatment and can expand the
dielectric function

ε(k, ω) ≈ ε(k, ωR) + iωI
∂ε(k, ωR)

∂ωR
= 0 . (9.57)

Combining this expression with ε(k, ωR) = εR(k, ωR)+ iεI(k, ωR), gives the damp-
ing rate as

ωI = − εI(k, ωR)

∂ε(k, ωR)/∂ωR
. (9.58)

The imaginary part of the dielectric function is determined by the ion distribution
function

εI(k, ωR) = −π i
ω2

pi

k2

1

ni0

∂ fi0

∂v

∣∣∣∣
v=ωR/k

. (9.59)

Inserting the Maxwellian for fi0 and using the phase velocity of the ion-acoustic
wave for Te 
 Ti, vϕ = ωpiλDe/(1 + k2λ2

De)
1/2, we obtain, after some simple

algebra, the imaginary part of the dielectric function as

εI(k, ωR) =
√

π

8

2ω2
pi/ω

2
R

(1 + k2λ2
De)

3/2

(
Te

Ti

)3/2

exp

[
− Te/Ti

2(1 + k2λ2
De)

]
. (9.60)

Fig. 9.11 Ion distribution
function (dashed line) and
electron distribution function
(full line) for ion acoustic
waves, vT,i � vϕ � vT,e
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Fig. 9.12 Real part (full line)
and magnitude of imaginary
part (dashed line) of the
ion-acoustic wave dispersion
for Te/Ti = 20. The acoustic
dispersion at small kλDe is
indicated by the dotted line.
Landau damping becomes
important for kλDe > 1

Estimating ∂ε(k, ωR)/∂ωR ≈ 2ω2
pi/ω

3
R, the Landau damping rate by ions for the

ion-acoustic wave becomes

ωI = −
√

π

8

ωR

(1 + k2λ2
De)

3/2

(
Te

Ti

)3/2

exp

[
− Te/Ti

2(1 + k2λ2
De)

]
. (9.61)

The damping of the wave becomes significant for kλDe > 1, as shown in Fig. 9.12
for Te/Ti = 20.

9.3.5 A Physical Picture of Landau Damping

This Section gives a brief summary of the different mechanisms that shed light on
Landau damping.

9.3.5.1 Bunching

Let us start with studying the motion of nearly resonant electrons in the potential
of the wave E(x, t) = Ê cos[kx(t) − ωt]. Here, we take care of the fact that the
correct force on the electron is not only determined by the change in time of the
electric field, but also by the change of position of the electron within the spatial
wave pattern. Acceleration or deceleration by the wave field therefore leads to a
phase modulation of the electron. When the electron is nearly resonant with the
wave, its position can be described as x(t) = x0 + vϕ t + �v(t) t , with vϕ = ω/k
being the phase velocity of the wave and �v(t) the small instantaneous speed of the
electron in the wave frame. Then, the motion of the electron is given by

d�v

dt
= − e

m
cos[kx0 + k�v(t)t] . (9.62)
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Because the electron is nearly resonant with the wave, we can argue that the elec-
tron moves in a nearly stationary sinusoidal potential well represented by the wave.
Equation (9.62) was solved by a fourth order Runge-Kutta integration. The tra-
jectories of 16 electrons were calculated for same initial velocity and equidistant
initial phases in the interval [π/2, 5π/2]. Normalized quantities X = kx , T = ωt ,
�V = k�v/ω, ε = ek/(mω2) were used. Figure 9.13a shows the trajectories
for negative velocity at T = 0, �V0 = −0.1 and ε = 0.01. Panel c shows the
corresponding trajectories for �V0 = +0.1. The panels b,d give the electric force
acting on the electron.

The trajectories show the result of the relative motion between the electron and
the wave. In the grey-shaded regime, the trajectories are focused and lead to the for-
mation of a localized bunch of electrons. The bunching in panel a involves positive
acceleration of electrons with a starting phase of ≈ π and a negative acceleration for
electrons at ≈ 2π . In the unshaded part of the wave phase, the electron trajectories
are divergent and lead to a reduction of electron density. This process is known from
klystron microwave tubes, where electron bunching in a time-varying electric field
is used to amplify microwaves. The same mechanism is acting for positive injection
velocity in panel c. Now the electrons starting at ≈ π overtake those starting at
≈ 2π . The difference is that the bunching point is convected with the mean flow to
a more negative position in a and to a more positive position in c.

Bunching is a non-linear process from its very beginning. After being injected
with equal speed and homogeneous distribution over all phase angles in [π/2, 5π/2],
it becomes immediately evident that, after a short time, the focusing and defocusing
of trajectories leads to an uneven distribution over the wave phase. An analytical

Fig. 9.13 (a) Trajectories of test electrons in a sinusoidal wave field for various phases at t = 0 and
negative initial velocity. (c) Same as (a) but positive initial velocity. (b, d) Corresponding electric
force exerted by the wave. The shaded areas indicate bunching of trajectories
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expression for the evolution of the phase-averaged velocity 〈�v〉x0 can be obtained
by the following iterative method described by Nicholson [211]

�v(2)(t) = − e

m
Ê

t∫
0

cos[kx(t ′)] dt ′ (9.63)

x(t ′) = x0 +
t ′∫

0

�v(1)(t ′′) dt ′′ (9.64)

�v(1)(t ′′) = �v0 − e

m
Ê

t ′′∫
0

cos[k(x0 + �v0 t ′′′)] dt ′ , (9.65)

which starts with calculating the velocity change �v(1) along the unperturbed orbit
in (9.65), and uses the improved position (9.64) to obtain an improved velocity
�v(2). Using the result �v(1) from (9.65) would give a zero net result on averaging
over the initial phases. Therefore, an expression is needed, which is correct to second
order. The individual steps of this calculation and averaging the result over the initial
phase kx0 are simple but lengthy. We give here only the final result,

〈
�v

〉
x0

= − 1

24

(
eÊ

me

)2

k2�v0 t4 . (9.66)

The dependence on the sign of �v0 shows that for the fast wave, which has �v0 <

0, the electrons, on average, gain momentum from the wave, whereas they loose
momentum in the slow wave. The analytical result (9.66) compares very well with
the numerical result 〈�v〉 = 1

16

∑
k �vk(t)−�v0 obtained from the 16 trajectories

in Fig. 9.13, as shown in Fig. 9.14.
A final caveat is necessary here. For clarity, a rather large value ε = 0.01

was chosen in Fig. 9.13. This leads to trapping of some particle orbits, which are
reflected inside the potential well of the wave. Trapping becomes evident from the
reversal of the slope of a trajectory at T > 10 in Fig. 9.13a,c. Linear Landau damp-
ing corresponds to the regime, where trapping has not yet occurred.

9.3.5.2 The Net Effect in a Velocity Distribution

The preceding arguments have shown that resonant particles that move slower than
the wave extract energy from the wave while those moving faster than the wave
give energy back to the wave. Landau’s formula (9.55) says that the damping rate
is proportional to the slope ∂ f0/∂v|vϕ of the unperturbed velocity distribution at the
phase velocity of the wave, as shown in Fig. 9.15a. When the slope is negative,
this is equivalent to saying that there are more slower than faster particles in the
resonance regime. Hence, the net effect for the wave is damping.
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Fig. 9.14 Evolution of the
phase-averaged velocity in
the wave frame showing the
t4 dependence in (9.66).
Circles: numerical result from
trajectories in Fig. 9.10

The same arguments lead to growing waves, i.e., an instability, when the veloc-
ity distribution has a positive slope. This can happen, e.g., in situations with a
warm electron population at rest and a second drifting electron group as shown
in Fig. 9.15b. The latter effect is known as inverse Landau damping. When both
populations are sufficiently narrow and well separated, we recover the beam-plasma
instability discussed in Sect. 8.1.2.

Fig. 9.15 (a) Maxwellian
distribution with an intervall
of resonant particles centered
about vϕ . Landau damping is
a consequence of d f/ dv < 0.
(b) A non-Maxwellian
distribution with d f/ dv > 0
for resonant particles

9.3.5.3 The Effect of Landau Damping on the Particles

Summarizing our understanding of longitudinal waves in a hot plasma, we can state
that the wave dispersion is determined by the non-resonant particles. Loosely speak-
ing, the dispersion is determined by the elastic properties of the plasma medium.
Further, we have learned that the wave amplitude Ê decreases in time by a group
of resonant electrons that experience a net acceleration at the expense of the wave
energy. So far, so good. Still unsolved is the question how this wave damping is
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compatible with the reversibility of the Vlasov equation and the conservation of
entropy.

Our discussion of Landau damping was so far restricted to the analysis of the
decay of the wave electric field, which according to (9.42) is an integral over the
perturbed distribution function. Therefore, the decay of the wave only reflects the
average response of all particles. But what happens to individual groups of particles?
Will any initial perturbation of this particle group also decay at the Landau damping
rate? This question can be answered by seeking a solution of the linearized Vlasov
equation (9.38) for the particle distribution.

For this purpose, we assume that the distribution function has been perturbed
by a short wave flash, E(x, t) ∝ exp(ikx)δ(t), that is periodic in space but local-
ized around t = 0. Then the perturbed distribution f1(x, v, t) obeys the linearized
equation

∂ f1

∂t
+ v

∂ f1

∂x
− e

me
Ê1eikx ∂ f0

∂v
δ(t) = 0 . (9.67)

Decomposing f1(x, v, t) = f̄1(v, t) exp(ikx) we obtain

∂ f̄1

∂t
+ ikv f̄1 = e

me
Ê1

∂ f0

∂v
δ(t) . (9.68)

Remembering that δ(t) = ∫ ∞
−∞ e−iωt we can seek the response f̄1 for each individ-

ual frequency of the wave packet that makes up the delta function

f̄1 = 1

2π

∞∫
−∞

f̃1(ω, t)dω (9.69)

Note, that f̃1 is not the Fourier transform of f̄1. Then f̃1 is obtained from

∂ f̃1

∂t
+ ikv f̃1 = e

me
Ê1

∂ f0

∂v
e−iωt (9.70)

and must fulfill the initial condition f̃1(t = 0) = 0. The solution of the differential
equation consists of the solution of the homogeneous equation

f̃ hom
1 = λe−ikvt (9.71)

and any particular solution of (9.70), which can be assumed as ∝ exp(−iωt). Insert-
ing in (9.70) gives

f̃ part
1 = i

e

me
Ê1

∂ f0

∂v

e−iωt

ω − kv
, (9.72)
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which is our previous result (9.40) for the wave-like perturbation of the distribution
function. However, the total solution for f̃1

f̃1 = i
e

me
Ê1

∂ f0

∂v

e−iωt − e−ikvt

ω − kv
, (9.73)

now contains an additional term ∝ eikvt , which we call the ballistic response
of the distribution function to the initial wave flash. Note that the denominator
ω − kv ensures that the main contribution to the wave-like response and the bal-
listic response is concentrated in the resonant particles. Again, a proper treatment
of the pole in integrating f̃1 over ω will give a complex ω. Therefore, the wave-like
response of the distribution function will decay by Landau damping. However, the
ballistic term contains real values for k and v and will not disappear for t → ∞.

The ballistic response represents a superimposed corrugation of the distribution
function as shown in Fig. 9.16. In the course of time, this corrugation becomes ever
finer. Therefore, the macroscopic electric field associated with this perturbed distri-
bution, which results from an integral over velocity, will vanish by phase mixing.
This solves the paradox that a macroscopic quantity dies out while the information
is still hidden in the subtleties of the distribution function. It is no surprise that
Coulomb collisions, which generate slight velocity changes, will be an efficient
mechanism to erase this memory of the initial perturbation.

In summary, any disturbance observed at (x, t) has two sources. One is the
plasma waves that have propagated in space and time and reach x at time t . This is
mainly the contribution of the non-resonant particles. The other source are particles,
which reach (x, t) and carry with them the memory of their original perturbation.
Here, the resonant particles are most important in draining energy from the wave.
Their velocity spread is the reason for the phase mixing of the ballistic response.

Fig. 9.16 A Maxwellian
with superimposed ballistic
response to an initial
perturbation. (a) t = t0,
(b) t = 3t0

9.3.6 Plasma Wave Echoes

The existence of this ballistic response, which is at the heart of Landau damping,
could be proved experimentally by the generation of plasma echoes for electron
waves [208, 209, 212] and for ion waves [213]. In the preceding Section, we had
derived the ballistic response to a wave flash localized in time. Although it is pos-
sible to produce temporal echoes, it is experimentally much easier to study spatial
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echoes, which are produced by a localized source that imposes a continuous wave
pattern in time ∝ e−iωtδ(x).

The principle of a wave echo experiment with ion waves [210] is shown in
Fig. 9.17. A first wave with frequency ω1 is excited by a grid at x = 0 and decays
by Landau damping. The perturbed distribution function in the region x > 0 then
takes the limiting form

f̃1 ∝ cos
(
ω1t − ω1x

v

)
. (9.74)

When a voltage with a frequency ω2 > ω1 is applied to a grid at position x = d,
where the macroscopic signal of the first wave has disappeared by phase mixing, two
processes will be observed. A second wave with frequency ω2 will propagate away
from the grid and decay by Landau damping. Further, the perturbed distribution
function will now contain a second-order ballistic memory from this modulation,
which reads

f̃2 ∝ cos
(
ω1t − ω1x

v

)
cos

(
ω2t − ω2(x − d)

v

)
(9.75)

= 1

2

{
cos

[
(ω1 + ω2)t − ω1x + ω2(x − d)

v

]

+ cos

[
(ω2 − ω1)t − ω2(x − d) − ω1x

v

]}
. (9.76)

The first term in (9.76) is again rapidly oscillating and will give no macroscopic
signal because of phase mixing. The second term, however, becomes stationary for
ω2(x −d)−ω1x = 0 and represents the echo signal, which will attain its maximum
amplitude at

xecho = ω2

ω2 − ω1
d . (9.77)

In this way, plasma wave echoes demonstrate the reversibility of the phase mixing
process. This is also a proof of the entropy conservation of the Vlasov model.

Fig. 9.17 Schematic of a wave echo experiment. The first wave is launched by a grid at x = 0, the
second at x = d. The echo signal (magnified amplitude) is detected with a movable probe and a
receiver tuned to ω2 − ω1. The echo maximum is found at x = ω2d/(ω2 − ω1)
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9.3.7 No Simple Route to Landau Damping

The discussion in the previous paragraphs was an attempt to grasp some constituents
behind the physical mechanism of Landau damping. Each individual view, however,
must be incomplete—otherwise Landau damping could be “explained” by fluid
models or even single-particle motion whereas it is at the heart of kinetic plasma
description (Fig. 9.18).

Fig. 9.18 The Landau damping puzzle showing the ingredients of a simplified description of the
physical processes behind Landau’s famous formula

We have learned that concepts like “the wave” must be considered carefully.
The wave electric field is mostly due to the oscillatory motion of the non-resonant
particles, which we had seen to be responsible for the wave dispersion. Landau
damping describes the interaction between the wave and the resonant particles, in
other words, the collective scattering of a subgroup of particles by the majority of
particles, which gives rise to wave damping. Our simplification was the introduction
of an artificial boundary that separates the resonant from the non-resonant particles,
which allowed some useful estimates. Landau’s treatment, however, does not make
such an explicit distinction.

In the end, Landau’s effect of collisionless damping is like Lewis Carrol’s famous
Cheshire cat, where the macroscopic wave signal (the cat) disappears while the
information about the wave structure (the grin) is still conserved in the ballistic
response.

9.4 Plasma Simulation with Particle Codes

The principal difficulty in solving Newton’s equation for N interacting particles lay
in the sheer number of N = 1010 − 1020 particles in a typical plasma. Moreover,
calculating the interaction force between N particles involves ≈ N 2 evaluations of
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the shielded Coulomb force. We had overcome this difficulty in the previous section
by grinding the particles into ever finer “Vlasov sand” that has the same q/m for
each grain, and therefore preserves the interaction forces between volume elements
of finite size. This concept allowed a statistical treatment in terms of the Vlasov
equation.

In this Section, we go into the other direction and merge all particles within a vol-
ume element into a superparticle. Again this superparticle has the same q/m as the
individual particles it consists of. Typical numbers of particles within a superparticle
can be Ns = 104 − 106. A further improvement for the numerical simulations of
electrostatic problems with superparticles is the assignment of the charge distribu-
tion, the resulting electric field and potential to a fixed grid with Ng grid points. This
reduces the calculation effort for a one-dimensional system to N Ng log2 Ng instead
of N 2 steps, which can be a substantial reduction, if N = 105 and Ng = 100,
typically.

Plasma physics by computer simulation is now an established branch of our field.
The fundamental methods are described in textbooks, e.g., [214, 215]. In the follow-
ing, the particle-in-cell (PIC) method will be described, which is implemented in
many codes. Some of these codes are available for free.1 Have fun playing yourself
with the codes. It will give you the impression that you can master the plasma.
The experimental plasma physicists often experience that the plasma masters the
experimenter.

9.4.1 The Particle-in-Cell Algorithm

The discussion of plasma simulation will be restricted to one-dimensional (1-D)
electrostatic problems, which we had studied before by analytical methods. The PIC
method assumes that the particle can be found with the same probability at any place
within a cell of the computational grid. This is equivalent to assigning a box-shaped
profile of width �x for the particle. When the superparticle moves over the grid,
there is a continuous change of its contribution to a cell p and its neighboring cell
p + 1, as shown in Fig. 9.19.

The charge assignment to grid point x p is made by

ρp = q Ns

�x

N p∑
i=1

W (xi − x p) (9.78)

with the linear weighting function

W (x) =
{

1 − |x | : |x | < 1
0 : |x | ≥ 1 .

(9.79)

1 http://ptsg.eecs.berkeley.edu/



248 9 Kinetic Description of Plasmas

Fig. 9.19 (a) The particle at xi is represented by a box-like charge cloud of width �x . When it
moves over the calculation grid, charge is assigned to cells p and p + 1 according to the overlap
of the cloud with the cell. (b) This charge assignment is described by the weighting function
W (x − xp) for the cell p

The advantage of such extended charge clouds lies in the smooth variation of the
interaction force between two such clouds. If the particle was represented by a thin
charge sheet, then the interaction force between two such sheets, which is indepen-
dent of the distance between the sheets, would suddenly switch sign when the sheets
penetrate each other.

The electric field results from solving Poisson’s equation on this grid. First the
second derivative is replaced by a second difference

Φp−1 − 2Φp + Φp+1

(Δx)2 = −ρp

ε0
. (9.80)

Then, the electric field results from

E p = φp−1 − φp+1

2Δx
. (9.81)

Poisson’s equation can be readily solved by diagonalization of the matrix, see e.g.,
[214]. For periodic boundary conditions, methods based on fast Fourier transform
may be even superior. The interpolation of the field force at the position of the
particle is made with the same weighting function (9.79) as used for the charge
assignment on the grid

Fi = q Ns

Ng−1∑
p=0

W (xi − x p)E p . (9.82)
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The particle position is advanced by a discrete representation of Newton’s equation
in terms of a leap-frog scheme

xn+1
i − xn

i

Δt
= v

n+1/2
i

v
n+1/2
i − v

n−1/2
i

Δt
= F(xi )Δt

mi
, (9.83)

in which the superscript labels the number of the time step. The advancement of
the velocity is made at half timesteps. A full cycle of the PIC time step is shown in
Fig. 9.20.

Fig. 9.20 Time step of the
particle-in-cell technique

9.4.2 Phase-Space Representation

Before discussing the interaction of electrons with wave fields, let us shortly recall
the description of a dynamical system in phase space. A simple one-dimensional
system, the pendulum, is described by the potential energy

Wpot = −W0 cos(ϕ) . (9.84)

For small excitation energies, the pendulum performs harmonic oscillations about
the equilibrium position at ϕ = 0. The potential well and the phase space ϕ–(dϕ/dt)
of this pendulum are shown in Fig. 9.21. The phase space contours in Fig. 9.21b
correspond to various values of total energy

Wtot = 1

2
I
(

dϕ

dt

)2

− W0 cos(ϕ) , (9.85)

I being the moment of inertia for this pendulum.
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The phase space representation has the following properties:

• For small total energy, the energy contour is an ellipse.
• There are bound oscillating states for Wtot < 2W0 and free rotating states for

Wtot > 2W0, separated by a separatrix, which is shown dashed line in Fig. 9.21b.
• The motion of a phase space point is always clockwise, as indicated by the arrows

in Fig. 9.21b.
• The oscillation period becomes longer when the oscillation amplitudes is increased.

It becomes infinite at the separatrix.

We will use this phase space picture to study the motion of nearly resonant elec-
trons in a wave field. The resonance condition v≈vϕ ensures that the electron “sees”
a nearly constant potential well of the wave. Therefore, in a first approximation, its
motion is described by energy conservation in the moving frame of reference:

Wtot = 1

2
me(v − vϕ)

2 + eΦ̂ cos(kx) = const . (9.86)

Therefore, we can expect free electron streaming w.r.t. the wave when Wtot > 2eΦ̂.
This defines the trapping potential Φ t = m(v−vϕ)

2/(4e). Electrons with an energy
less than this critical value are trapped by the wave and perform bouncing oscil-
latiuons in the wave potential.

Fig. 9.21 (a) Potential energy of a pendulum. (b) Phase space contours of the pendulum for various
values of total energy. The dashed line separates bound oscillating states inside from free rotating
states
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9.4.3 Instability Saturation by Trapping

For comparison with the analytical treatment, we will study here a PIC-simulation of
the beam-plasma instability. The simulation is made with the ES1 code2 described
in [215].

The system consists of a majority of electrons at rest and an electron beam with
a beam fraction αb = 0.01. The system is neutralized by immobile ions. The num-
ber of plasma particles is 256 and there are 512 beam particles with q/m reduced
according to the beam fraction. The number of grid points is 64 and the time step is
chosen as ωpe�t = 0.05. For those readers, who want to run their own simulations,
it should be mentioned that the code uses normalized quantities

tnorm = ωpetphys , xnorm = kxphys , vnorm = vx,phys

v0
, Wnorm = 2Wphys

mev2
.

In the text below we will refer to the real physical quantities.
The result of this simulation is shown in Fig. 9.22b–f as a series of electron

phase space plots combined with the electric potential of the wave. Note that the
potential energy Wpot = −eΦ has the opposite sign. The ES1 code uses periodic
boundary conditions and the system length is just one wavelength of the unstable
mode. The x coordinate is therefore given as a wave phase angle between 0 and
2π . The system of reference rests in the moving frame of the unperturbed beam.
Therefore, the unstable slow space-charge wave, which is propagating nearly at the
beam speed, is moving slowly to the left in this representation.

The exponential growth of the instability and its eventual saturation can be
seen in a semi-log plot of the electric field energy and the beam kinetic energy
in Fig. 9.22a. For ωpet < 72, an exponential growth of the beam-plasma insta-
bility is found, which becomes a straight line in the semi-log representation. The
growth rate of the wave energy ε0 Ê2/2, is twice the growth rate (8.9) of the
wave amplitude. From the slope of the straight line we obtain the growth rate as
2γ /ωpe = 0.272, which compares well with the value from linear instability analy-
sis, 2γ /ωpe = 31/2(αb/2)1/3 = 0.296.

The time ωpet = 72 marks the end of the exponential growth phase. Figure 9.21b
shows that the beam electrons are still free streaming, but experience a consider-
able velocity modulation. The initial beam velocity v0 = 1 is indicated by a fine
horizontal line. The non-resonant plasma electrons show a much smaller velocity
modulation. The field energy in Fig. 9.21a begins to saturate and then performs
oscillations, in which field energy and beam kinetic energy are exchanged. At the
first maximum of the field energy, the corresponding phase space in Fig. 9.21c shows
that the beam particles have been trapped by the wave field and begin to perform
bouncing oscillations in the potential well represented by the positive half-wave. In
panel d, the wave energy has reached a minimum, which is associated with a large

2 The code is available from http://ptsg.eecs.berkeley.edu/#Software
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Fig. 9.22 Particle-in-cell simulation of the beam-plasma instability for αb = 0.01
(a) Semi-log plot of the electric field energy (full line) and beam kinetic energy (dashed line). (b–f)
x–vx phase space showing plasma electrons at v ≈ 0 and beam electrons at v ≈ 1. For comparison,
the wave potential (long-dashed line) is superimposed. The selected examples correspond to the
times marked by vertical lines in panel (a)

group of beam electrons performing again a forward motion in the potential well.
These electrons have gained energy from the wave. At this point, the beam kinetic
energy has nearly reached its original unpertubed value. Panels e and f show that the
beam electrons begin to spread over all phases of the trapping motion but are mostly
confined in the potential well of the wave. The spread of the electrons over the entire
potential well is a consequence of the dependence of the bouncing frequency in a
sinusoidal potential well on the electron energy.

The bounce frequency can be calculated from the curvature at the minimum of
the potential well; the wave field energy 1

2ε0 E2 at trapping can be obtained from the
trapping potential Φt, see problems 9.5 and 9.6.

9.4.4 Current Flow in Bounded Plasmas

At last, let us revisit the questions of current flow in diodes. The first example is
intended to illustrate the similarity of the analytic treatment of the virtual cathode
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problem in diodes with thermal emitters with PIC-simulations. The second exam-
ple introduces an instability of the electron beam in a diode, which shows that an
inhomogeneous equilibrium flow can switch to an oscillating state of a different
topology in phase space.

9.4.4.1 The Virtual Cathode of a Thermal Emitter

When the emission current of a cathode exceeds the limiting value given by the
Child-Langmuir law (7.11) a potential minimum forms that reflects slow electrons
back to the cathode. The current beyond the potential minimum is just the Child-
Langmuir current. Therefore, the potential minimum was named virtual cathode.
An analytical treatment of this problem by the Vlasov-theory was given in Sect. 9.2.

Here, we re-examine the problem by PIC-simulation with the PDP1 code [216].
The simulation parameters for the diode with thermal emitter in Fig. 9.23 are given
in Table 9.1.

The thermal velocity of the electrons is here defined as vT = (kBTe/me)
1/2 and

corresponds to a cathode temperature of 650 K. The Child-Langmuir current for
an empty diode with this set of parameters is jCL = 0.0235 A m−2. The injection
current is therefore about 40 times larger, which leads to the formation of a poten-
tial minimum of −0.16 V depth. The actual anode current density in this diode is
0.059 A m−2.

Fig. 9.23 Formation of a potential minimum (virtual cathode) in front of a thermal emitter. The
electron phase space is superimposed. Note the reflected electrons that return to the cathode and
the narrowing of the electron distribution by acceleration beyond the virtual cathode

Table 9.1 Simulation
parameters for virtual cathode
formation

Length of diode 0.01 m
Applied voltage 1 V
Injection current density 1 Am−2

Electron thermal velocity 1 × 105 m/s
Number of cells 400
Particles per superparticle 5 × 105

Time step 5 × 10−11 s
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We can now check the consistency of the simulation results by comparing with
the analytical model presented in Sect. 9.2. The depth of the virtual cathode ηmin =
ln( j/jem) gives

Φmin = kBTe

e
ln

(
j

jem

)
= 0.056 V ln(0.059) = −0.16 V . (9.87)

This is just the observed depth of the potential minimum in the simulation.

9.4.4.2 Blocking Oscillations of an Electron Beam

Let us now investigate the injection of a monoenergetic electron beam into a vacuum
diode without any applied external voltage. In Sect. 8.3.5 we had argued that an
electron beam in a vacuum diode is slowed down by its own space charge and a
virtual cathode forms in the center of the diode. The maximum stable current in this
diode is reached, when the electrons are slowed down to practically zero velocity at
the potential minimum. This was the situation that can be described by back-to-back
operation of a time-reversed and a normal Child-Langmuir diode.

When a much larger current is injected into the diode, the virtual cathode will
form much closer to the injection point. The simulation in Fig. 9.24a–d shows how
the injected electron beam comes to a stagnation point (panel b) and is reflected
back towards the cathode (panel c). At this time, the additional space charge from
the reflected electrons has shifted the stagnation point towards x = 0. On the other
hand, the volume between injection point and potential minimum has shrunk and the
potential minimum becomes less negative (panel c). In panel d, the process begins
to repeat.

–––

– – – –

–

Fig. 9.24 Virtual cathode oscillations from a monoenergetic electron beam, which is stopped by
its own space charge
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–

–

Fig. 9.25 Oscillations of the mid-potential in the diode and the total current

The final state of the system is non-stationary and shows strongly-nonlinear cur-
rent oscillations as shown in Fig. 9.25. For a short time, the current is even dis-
rupted. Note that the total current, which is the sum of the electron current and the
displacement current by motion of the virtual cathode, becomes even positive for
a short time. This phenomenon is called blocking oscillations and is typical for a
relaxation oscillator. A typical feature of relaxation oscillators is the appearance of
two different time scales in the oscillation period, a fast evolution near the point
of current zero, and a gradual evolution in between. The spiked waveform of the
current contains several harmonics.

Virtual cathode oscillations are an efficient means to produce high-power
microwaves [217, 218]. By injecting a relativistic electron beam with currents from
1 to 200 kA, and energies from 0.1 to 10 MeV, microwaves with frequencies of
1–100 GHz and pulse durations from 1 to 500 ns are produced. For example, Davis
et al. [219] reported output powers of 1.4 GW at 3.9 GHz with several hundred
megawatts in harmonic radiation. Other authors [220] report 4 GW at 6.5 GHz.
A one-dimensional analytical model of virtual cathode oscillations [221] predicts
microwave frequencies and power. Under optimum conditions, up to 30% con-
version efficiency (microwave energy to beam energy) can be expected. In most
experiments, the conversion efficiency was close to 3%.

Summarizing, the two examples presented above, of a diode with a thermal emit-
ter or with an injected electron beam, both being operated at supercritical injection
current, reveal similar principles as we had found in the analysis of Maxwellian
distributions and electron beams in kinetic theory. Electron beams can efficiently
pile up space charge by bunching. In a Maxwellian distribution, bunching is coun-
teracted by phase mixing of the contributions from many beams that make up the
Maxwellian. Hence, the apparent stability of the virtual cathode for a thermal emitter
can be understood as the Landau damping of those modes that are responsible for
blocking oscillations in the case of monoenergetic injection.
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The Basics in a Nutshell

• The Vlasov equation

∂ f

∂t
+ v · ∇r f + q

m
(E + v × B) · ∇v f = 0

describes the evolution of collisionless plasmas with an arbitrary distribu-
tion function in a 6-dimensional phase space spanned by position x and
velocity v under the action of self-consistent electric and magnetic fields.

• Plasma waves can be treated by the linearized Vlasov model in combina-
tion with Maxwell’s equations. The terminologies “cold plasma” and “hot
plasma” refer to the ratio of thermal speed and phase velocity of the wave.

• Landau damping describes the exponential decay of a macroscopic wave
electric field while the information is retained in the perturbed distribution
function. The information can be partly recovered in echo experiments.

• The rate of Landau damping is determined by the slope of the unper-
turbed distribution function at the wave’s phase velocity. For an unshifted
Maxwellian, this is always negative. Velocity distributions having an addi-
tional shifted Maxwellian can produce a velocity interval, where the slope
becomes positive leading to inverse Landau damping or instability.

• A physical picture of the mechanisms behind Landau damping involves
charge bunching, ballistic response of particles and phase mixing.

• Plasma simulation with particle codes is complementary to the Vlasov
approach. It describes the motion of superparticles that represent clumps
of some thousand real particles. The particle-in-cell technique overcomes
the limitation of N 2 scaling of the computation time for particle-particle
codes.

• Plasma simulations make the nonlinear evolution of plasma processes
accessible. Examples are: the trapping of electrons in beam-plasma interac-
tion or the onset of blocking oscillations in diodes above the critical current.

Problems

9.1 Show that any function g( 1
2 mv2 + qΦ), which only depends on the total energy

of a particle, solves the Vlasov equation

∂ f

∂t
+ v

∂ f

∂x
− q

m

∂Φ

∂x

∂ f

∂v
= 0 .

9.2 Verify that the mean velocity of a one-dimensional half-Maxwellian electron
distribution is given by
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vmean = 1

ne0

∞∫
0

v f (1)
M dv =

(
kBTe

2πme

)1/2

.

9.3 Start with the velocity distribution (9.25) and prove that the current density in
the right half of the diode is the constant (9.28).

9.4 Derive the Landau damping rate for the Bohm-Gross mode (9.55) from (9.44)
and (9.54).

9.5 Using (8.8) and (9.86), show that the trapping potential is given by

Φt = me

4e
v2

0

[
1

2

(αb

2

)1/3
]2

.

9.6 The mean energy density of the electric wave field is given by WE = 1
2ε0〈E2〉 =

1
4ε0 Ê2. Consider the fastest growing mode of the beam-plasma instability (8.24) at

the onset of trapping. Use |Ê | = kΦ̂ and k = ωpe/v0 and show that the mean field
energy is given by

WE =
(

1

2
nb0 mv2

0

)
2−31/3α

1/3
b .



Chapter 10
Dusty Plasmas

You boil it in sawdusts: you salt it in glue:
You condense it with locusts and tape:
Still keeping one principle object in view—
to preserve its symmetrical shape.

Lewis Carroll, The Hunting of the Snark

Since the 1980s, a new branch of plasma physics has emerged—the study of dusty
plasmas. Because of similarities with complex fluids, dusty plasmas are also known
as complex plasmas. This field has roots in astrophysics [222] and became inter-
esting for laboratory plasma research when powder formation in plasma-enhanced
chemical vapour deposition was identified to limit the deposition rate [223, 224],
and when dust formation and dust trapping was observed during plasma etching of
silicon wafers [225].

Dusty plasmas contain, among electrons and atomic or molecular ions, micro-
scopic particles with sizes ranging from some ten nanometers to several ten micro-
meters. The dust particles become electrically charged and interact with the other
plasma constituents. When the density of dust particles is sufficiently high, the
electrostatic interparticle forces become important. The dust subsystem can develop
collective behavior, which manifests itself as wave phenomena or, for micrometer
particles carrying several thousand elementary charges, by the formation of liquid or
solid phases. The discovery of plasma crystallization, in 1994, [32–34] gave a strong
boost to the field of dusty plasmas. Much of the attractivity of this field of research is
due to the fact that the high mass of dust particles—a dust particle of 1 μm diameter
has a typical mass of 3 × 1011 proton masses—leads to a long dynamic response
time of milliseconds or longer. For dusty plasmas with micrometer sized particles,
the motion of all individual particles can be followed by fast video-cameras. This
is a unique opportunity to study the collective behavior of an ensemble of charged
particles at the kinetic level.

The field of dusty plasmas has now reached maturity and various aspects have
been summarized in a host of review articles in the past decade [226–236] or in
monographs [237–241]. The topics addressed in this chapter are therefore not aimed
at giving a balanced overview of the many existing observations. Rather, we will
focus on the following questions

A. Piel, Plasma Physics, DOI 10.1007/978-3-642-10491-6_10,
C© Springer-Verlag Berlin Heidelberg 2010
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• What is the new physics introduced by dust particles carrying thousands or
hundred-thousands of elementary charges?

• What are the specific methods to study dusty plasmas?
• What does classical plasma physics learn from dusty plasmas?

The striking difference between a dusty plasma and a three-component plasma,
containing electrons, positive ions and an additional population of negative ions, is
the tremendous charge, qd = −(103 . . . 105) e, on a dust grain of several microm-
eter size. Whereas in gas discharges Coulomb collisions of electrons with ions are
negligible compared to collisions with atoms, negative dust particles lead to effi-
cient scattering of positive ions. Therefore, orbital motion of ions becomes a central
concept in dusty plasmas and turns out to be of equal importance as gyromotion in
magnetized plasmas. Orbital motion determines the nonlinear shielding effects of
these highly charged dust grains and momentum exchange between ions and dust
leads to the new phenomenon of ion wind forces.

The huge dust charge is also the reason for the high value of the coupling param-
eter between the dust grains that can lead to liquid and solid phases of the dust
system at room temperature. Plasma crystals [32–34] and Yukawa balls [36, 242]
are suitable systems to study structural properties of solids, phase transitions, or
phonon dynamics with “atomic resolution”.

Dust particles differ from negative ions in that their charge is not a fixed quan-
tity. Charge, being the integral of the charging currents over time, depends on
the changing environment along the the particle’s past trajectory. This makes the
Coulomb force non-conservative and can be the source of instability. For nanome-
ter sized dust, fluctuations of the charge due to the discrete steps of collecting an
ion or electron become important. Coagulation of small particles becomes possible
when one of the partners is either neutral or attains the opposite charge for a short
time.

For simplicity, we will discuss dusty plasma effects in the following only for
spherical particles. In situations with many particles, all the particles are assumed to
have the same size.

10.1 Charging of Dust Particles

In most laboratory or industrial plasmas, the charging of dust grains occurs primar-
ily by collecting electrons and positive ions. Dust grains behave like small isolated
probes at floating potential. Because of the higher thermal speed of the electrons
compared to the ions, dust grains are negatively charged. In addition to collecting
thermal plasma particles, dust particles in space are subjected to fluxes of energetic
photons or particles, e.g., solar wind particles, which release electrons by photoe-
mission or secondary emission. These processes can even be more important than
charge collection and make the dust positively charged. A survey of charging pro-
cesses in space can be found in [243].
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In this Section, we will first analyze the elementary mechanisms and then turn
to the questions of charge variability: How long is the relaxation time to a new
equilibrium charge? What is the statistics of charge fluctuations? How do charges
compete for the charging resources?

10.1.1 Secondary Emission

Secondary emission is a process in which a primary energetic particle penetrates the
surface of a solid and creates free electrons along its path by ionization of atoms
in the solid until it is stopped. The secondary electrons can reach the surface by
diffusion and leave the solid. The yield of secondary electrons is defined as the
ratio of the emitted electron current to the current of primary particles. For electron
impact, it is described by δ = Is/Ie, i.e., the average number of released electrons
per incident electron.

Secondary electron emission by ion impact is described by a coefficient γ , the
average number of released electrons per incident ion. For most materials, we have
γ � 1, and γ depends only weakly on ion energy. The release of electrons from
metal cathodes by ion impact, which is essential for plasma production in glow
discharges, will be discussed in Sect. 11.1.3.

The shape of the secondary emission yield by electron impact as a function of
primary electron energy is given by the formula [244],

δ(W ) = δm
W

Wm
exp

[
−2

(
W

Wm

)1/2

+ 2

]
, (10.1)

which is an accepted model for metal surfaces at normal incidence. Here, Wm is
the energy where the secondary yield takes its maximum of height δm. In [245] a
slightly different formula is used to describe materials of astrophysical interest,

δ(W ) = 4δm
W/Wm

[1 + (W/Wm)]2 . (10.2)

Both curves are compared in Fig. 10.1. It turns out that both models are practi-
cally identical for W/Wm < 2 but have different asymptotics at high energies. The
coefficients δm and Wm for the secondary electron yield of different materials are
compiled in Table 10.1 and can be used for both models.

The secondary emission from bulk material and small grains can be substan-
tially different. In a small spherical grain, a diffusing electron finds a surface in
any direction rather than only in one direction for bulk matter. This effect increases
the secondary yield. On the other hand, small dust grains become transparent for
energetic projectiles, which deposit only part of their energy thus lowering the yield.
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Fig. 10.1 Secondary
emission yield for electron
impact on a solid as a
function of primary electron
energy W . Solid line:
Sternglass [244], dashed line:
Draine & Salpeter [245]

Table 10.1 Secondary emission yield by electron impact for materials of astrophysical interest

Material δm Em (eV) Source

Graphite 1 250 [245]
1 300 [246]

SiO2 2.9 420 [245]
Mica 2.4 340 [245]
Fe 1.3 400 [245]
Al 0.95 300 [245]
Al2O3 2.6 300 [246]
MgO 23 1200 [245]
Lunar dust ≈ 1.5 ≈ 500 [245]

1.4 275 [246]
1.7 340 [246]

10.1.2 Photoemission

Photoelectric emission is considered to be the dominant mechanism of cosmic grain
charging in many astrophysical environments. The elementary process involves a
photon of energy Wph = hν which liberates an electron, which is bound to the grain
with a binding energy Wb, called the work function of that material. The electron
leaves the grain surface with an excess energy Wex = hν− Wb, and the grain charge
increases by one (positive) elementary charge.

In the laboratory, where the source of energetic photons may be a UV laser or
a mercury lamp with a strong emission line in the UV, this concept leads to a final
state, in which the grain attains a high positive potential Wpot. The potential is just
high enough that the next liberated photoelectron cannot excape from the attractive
potential well of the dust grain and returns to the surface of the dust grain. This gives
the depth of the potential well Wpot = −eΦpot = −(hν − Wb) and determines the
dust charge.

In reality, the situation in space is more complex. When photoemission becomes
competitive with electron and ion collection, two different equilibria with posi-
tive and negative charge can coexist (named the flip-flop effect) [247]. This is an
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important point for the formation of dust agglomerates—the first step in the forma-
tion of planets around protostars. Like-charged dust grains, by their mutual repul-
sion, would be prevented from coagulation.

Moreover, dust charging by photoemission becomes more complex than the esti-
mates above, because the source of UV radiation is usually not monochromatic.
Rather, the spectrum of energetic photons from the Sun extends from the infrared
to the extreme ultraviolet regime. Figure 10.2a gives the Solar Irradiance Reference
Spectrum measured during the solar Carrington rotation 2068 (20 March to 16 April
2008) [248].

To gain insight into the photoionization of typical elements in cosmic dust, the
cross section for photoionization of neutral carbon and silicon atoms is shown
in Fig. 10.2b [249]. The thresholds for ionization lie at 110 nm (C) and 152 nm
(Si). Therefore, the Lyman-α line of atomic hydrogen at 121.6 nm, which marks
the boundary between the UV and EUV region, contributes to the ionization of
silicon but not of carbon atoms. For both materials, the cross sections decay fast
towards shorter wavelength. Therefore, the main contribution for photoionization
comes from the region near the threshold.

For an extended spectrum, the photoelectron current released from the surface of
a dust grain of radius a is given by

Iph = πa2eFph with Fph =
∫

ξ(Wλ)S(Wλ)dWλ . (10.3)

–

–

–

–

–

–

–

–

Fig. 10.2 (a) Solar Irradiance Reference Spectrum from exteme UV to infrared wavelengths (from
[248]). (b) Cross section for photoionization of carbon and silicon atoms
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Here, we have to integrate the product of the photoelectric efficiency ξ(Wλ) (i.e.,
the number of electrons per incident photon) and the spectral energy density S(Wλ)

over the entire solar spectrum. The photoelectric efficiency of a dust particle cannot
simply be derived from atomic data but must be determined experimentally. For
Lunar dust, the photoelectric yield was measured in [250].

The spectral extent of the solar photon flux results in a distribution of excess
energies. The photoelectrons can then be considered to have an effective temperature
Tph. This means, that there will be a fraction of photoelectrons in the tail of the
distribution function, which can overcome the potential well of a positively charged
grain. This fraction can be described by an appropriate Boltzmann factor. In [246]
the following expression for Fph is used:

Fph = 3 × 1010χ
1

[r(AU)]2 exp

(
− eΦ

kBTph

)
. (10.4)

The factor r−2 takes care of the decay of the solar photon flux with heliocentric
distance. χ is an empirical constant, which is 0.9 for metallic or graphitic grains,
and 0.1 for icy grains. A typical value for the effective electron temperature is
kBTph = 1.3 eV. The exponential represents the Boltzmann factor for a (positive)
grain potential Φ.

10.1.2.1 Application: Lunar Horizon Glow

Photoelectric charging is considered as the main charging mechanism for lunar dust.
The Moon is covered with fine powder (regolith) which has been generated by the
impact of small meteorites. Further, the lunar surface is electrostatically charged by
the large-scale interaction with the local plasma environment and the photoemission
of electrons from solar UV and X-ray radiation. The like-charged surface and dust
grains then begin to repel each other. The surface potential ranges from +4.1 V
at the subsolar point to −36 V at the terminator, and +3.1 V in an intermediate
range. A Debye sheath of about 1 m thickness (8 m at the terminator) is formed, in
which a vertical electric field exists. Larger dust grains of ≈ 5 μm diameter can thus
be levitated within this sheath and reach (3–30) cm height [251]. These grains can
explain the lunar horizon glow observed from positions at the lunar surface by the
Surveyor-7 or Lunochod-II landers.

Surprisingly, the Apollo-17 astronauts even observed horizon glow in the orbit-
ing phase of their spacecraft before local sunrise, and gave first evidence of an
extended dust atmosphere of fine particles that reaches to orbital altitudes [252].
Capt. E. A. Cernan, commander of Apollo-17, drew a number of sketches describ-
ing the light scattering observations in the minutes before sunrise showing a diffuse
“corona” and “streamers”, see Fig. 10.3a. The crucial observations for local light
scattering are found in the sketches made at T-2 minutes, T-1 minute, and T-5 sec-
onds. While the corona has been visible for more than 4 min, the streamers were
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(a) (b)

Fig. 10.3 Lunar horizon glow before sunrise as observed by Apollo-17 astronauts. (a) “Corona”
and rays sketched by Captain E. A. Cernan. The handwritten comments read: “T-6min Glow with
intensity increasing gradually to center”, “T-3 Glow starts to spread on horizon”, “T-2 First sign of
definite linear streamers”, “T-1 Peaks on Moon in direct sunlight”, “T-5sec Glow same but bigger
& brighter, but streamers now very definite”. (b) The observation geometry and a tentative dust
distribution. (Reproduced with permission of the author from [252])

observed only from T-2 minutes and intensified at a progressively increasing rate
compared to the corona. The increase during the final 5 s exceeds that during the
previous 2 min.

Such a phenomenon can only be explained by light scattering from submicron
particles, which, according to Mie-scattering theory, is strongly enhanced in a nar-
row cone in forward and backward direction [253]. Therefore, forward scattered
light becomes visible only seconds before crossing the point of orbital sunrise
(T = 0), see Fig. 10.3b. Another example for effective light scattering by small
particles is the Zodiakal light—backscattered sunlight from interplanetary dust in
the ecliptic.

The lunar dust atmosphere is still a field of controversal debate because of a
lack of new observational results. One of the current models of lunar dust lofting
involves an electrostatic fountain mechanism [254]. It is argued that a dust grain
of 10 nm radius carrying (20–200) elementary charges has initially an electrostatic
potential energy between (60–6000) eV. This energy compares to the difference of
gravitational potential energy between the lunar surface and an altitude h = 100 km
for that grain, mgLh = 1250 eV, which makes such a fountain process energet-
ically possible. Larger grains will reach only lower altitudes. However, there are
many open questions left, e.g., the number density of these particles in the dust
atmosphere, the size distribution, the efficiency of light scattering, the transport
of submicron dust by horizontal electric fields or by radiation pressure etc., which
require more experimental data before the lunar dust atmosphere can be completely
understood.
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10.1.3 Charge Collection

The collection of ions and electrons by small dust grains is governed by orbital
motion around the dust grain. This is true for attractive and repulsive dust potentials.
We had seen in Sect. 7.5.4 that the collection cross section, i.e., for hitting a small
charged sphere of radius a and surface potential Φ, is described by the OML factor

σc = πb2
c = πa2

(
1 − 2qΦ

mv2

)
. (10.5)

When the potential is attractive, qΦ ≤ 0, the collection cross section is larger than
the geometric cross section and vice versa, see Fig. 10.4a,b. This simple picture
describes the collection of a mono-energetic group of particles.

In the case of a Maxwell distribution, we have to calculate the current collected
by a small sphere by integrating the contributions from all velocities and from the
full solid angle 4π , as shown in Fig. 10.4c. In the case of a repulsive potential,
qΦ > 0, a minimum velocity v0 = (2qΦ/m)1/2 ensures that σc ≥ 0. The cor-
rect distribution function for this case is the Maxwell distribution of speeds, which
results in

I = q

∞∫
v0

vσc(v) fM(v)dv

= qnπa2
(

m

2πkBT

)3/2 ∞∫
v0

4πv
(
v2 − v2

0

)
exp

(
− mv2

2kBT

)
dv

= qnπa2
(

kBT

2πm

)1/2

exp

(
− qΦ

kBT

)
. (10.6)

The exponential is the familiar Boltzmann factor that describes the current reduction
by the potential barrier. This was illustrated in Fig. 10.4b in terms of a collection
radius bc < a.

For an attractive potential, we can set the lower integration limit to zero and the
integral to be solved reads

Fig. 10.4 (a) Increase of
collection cross section by
OML factor for an attracting
potential, (b) Decrease of
collection cross section for a
repulsive potential, (c)
Summing up contributions
from all directions
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I = qnπa2
(

m

2πkBT

)3/2 ∞∫
0

4πv
(
v2 + v2

0

)
exp

(
− mv2

2kBT

)
dv

= qnπa2
(

kBT

2πm

)1/2 [
1 − qΦ

kBT

]
. (10.7)

The expression in the bracket is the OML-factor that describes the focusing of ion
orbits shown in Fig. 10.4a. This is the result, which we had already used in the
discussion of the electron current to a spherical probe in Sect. 7.5.4.

10.1.3.1 The Floating Potential of Dust Grains

In the absence of other charging mechanisms, we can conjecture that, because of
the much higher electron thermal velocity, the charge on a dust grain, and hence
its surface potential, must be negative. Then we can equate the electron retardation
current from (10.6) with the ion current from (10.7) to obtain an implicit equation
for the floating potential

(
kBTe

2πme

)1/2

exp

(
eΦf

kBTe

)
=

(
kBTi

2πmi

)1/2 [
1 − eΦf

kBTi

]
, (10.8)

which has to be solved numerically. Now, setting τ = Te/Ti, μ = m i/me, the
normalized floating potential ηf = −eΦf/kBTe is found to be only a function of the
mass ratio μ and the temperature ratio τ , but the floating potential turns out to be
independent of the particle size a. Then, the equation for η reads

e−η = (μτ)−1/2(1 + τη) . (10.9)

Figure 10.5 shows that, over a wide temperature range, the floating potential is only
a weak function of the temperature ratio. The hydrogen ions were chosen as typical
for space plasmas whereas argon is a common gas in laboratory investigations. Note
that the floating potential Φf was assumed negative.

10.1.3.2 The Charge on a Dust Grain

The relationship between potential and charge on a dust grain can be established
when we consider the dust grain of radius a being a small spherical capacitor, which
has the capacitance

C = 4πε0a (10.10)

and gives the dust charge

qd = CΦf = 4πε0aΦf . (10.11)
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Fig. 10.5 The normalized
floating potential,
ηf = −eΦf/kBTe, of a dust
grain in a plasma with H+ or
Ar+ ions

In cases where the condition a � λD is not fulfilled, the opposing charges can be
considered as being localized near r = λD, and the capacitance is then enlarged to

C = 4πε0a

(
1 + a

λD

)
. (10.12)

A good estimate for the number of elementary charges Zd on a dust grain in a
laboratory argon plasma with Te/Ti ≈ 100 can be obtained using Φf = −2.41 kBTe.
Then

Zd = 1675 a (μm) Te (eV) . (10.13)

Nearly the same factor applies for an isothermal hydrogen plasma, which has the
classical value [222], Φf ≈ −2.5 kBTe.

10.1.4 Charging Time

The charging of a dust grain is governed by the charging equation

dqd

dt
= Ii + Ie , (10.14)

which can used to describe three different cases:

1. dqd/dt = 0 defines the floating potential Φf.
2. When q(t = 0) = 0, (10.14) yields the full nonlinear charging process of a dust

grain.
3. When qd deviates only slightly from its equilibrium value at the floating poten-

tial, (10.14) yields the linear relaxation time τ .
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Case 2 is of little practical value because it describes the dust-charge evolution dur-
ing the switch-on period of the plasma. Here we are mostly interested in the linear
charge relaxation time of case 3. Using Φ = q/C , and expanding the charging
currents about the floating potential, we obtain a relaxation-type equation for the
grain potential

dΦ

dt
= 1

C

[
dIi

dΦ

∣∣∣∣
Φf

+ dIe

dΦ

∣∣∣∣
Φf

]

︸ ︷︷ ︸
−1/R

(Φ − Φf) = − 1

RC
(Φ − Φf) . (10.15)

This is the well-known equation for charging a capacitor of capacitance C through
a resistor R, which gives a solution of the type

Φ(t) = Φ(t = 0)e−t/τ + Φf
(
1 − e−t/τ ) (10.16)

with a relaxation time τ = RC . In our case, the resistor R is related to the slope
of the characteristic of a spherical probe at floating potential, R = −dU/dI , as
shown in Fig. 10.6. The dependence of the relaxation time on the size of the dust
grain follows from C ∝ a (from the capacitance model) and R ∝ a−2 (from the
particle cross section), which makes τ = RC ∝ a−1. Therefore, large grains have
a much shorter relaxation time than small grains, which is at first counter-intuitive
from considering only the increase of grain capacitance with particle size.

This relaxation model for small deviations from the floating potential yields a
relaxation time that (for Te/Ti = 100) scales as

τ = 1.04 × 1010 s

√
Te (eV)

n (m−3) a (μm)
. (10.17)

Fig. 10.6 The effective
resistor R for the linear
charge relaxation time is
given by the slope of the
current-voltage characteristic
for a spherical grain at the
floating potential (dashed
line), R = −dU/dI

––
–

–
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Fig. 10.7 Nonlinear
relaxation of the dust charge
deviation from its equilibrium
value for a dust grain with
a = 500 nm and plasma
conditions Te = 3 eV,
Ti = 0.03 eV, n = 1015 m−3.
τ1 and τ2 are the time
constants from the early and
late relaxation. The relaxation
time in [255] was defined as
the 1/e point of the charge
deviation

For example, a dust grain of a = 1 μm radius in a typical laboratory plasma with
electron temperature Te = 3 eV and density n = 1015 m−3 has a charging time of
τ = 18 μs.

Solving the charging equation (10.14) by direct numerical integration shows the
non-exponential approach to the equilibrium value. The charge deviation �Zd from
the asymptotic value at large t is shown in Fig. 10.7 in a semilog plot. The final
approach is indeed exponential with a time constant τ2 = 36.2 μs, as predicted by
(10.17). The initial slope, which has a shorter time constant τ1 ≈ τ2/3, characterizes
the nonlinear dust charging regime. In [255] the dust charging time was defined as
the point where �Zd decayed by 1/e.

10.1.5 Charge Fluctuations

For small dust grains of some ten nanometers size, the continuum charging model of
the previous paragraph is no longer applicable. Rather, the collection of individual
electrons and ions must be considered, which introduces fluctuations of the charge
in discrete steps. The discrete charging process by a random process was studied in
[255]. The charging currents Ii and Ie can be replaced by charge collection proba-
bilities per second

Pi = Ii

e
Pe = − Ie

e
, (10.18)

which can also be interpreted as the charging frequencies by ions and electrons. The
charge evolves according to

qd(tk+1) = qd(tk) + eH

[
x1 − Pe

Pe + Pi

]
, (10.19)
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where x1 is a random variable that is uniformly distributed in the interval [0, 1], and
H(y) is a step function that is −1 for y < 0 and +1 for y ≥ 0. Since Pe and Pi
depend on the instantaneous value of qd(tk), the statistical process is nonlinear. The
length of the time step �tk = tk+1 − tk is given by

�tk = ln(x2)

Pe + Pi
, (10.20)

where x2 is a second random variable. When we replace x2 by the probability p(t)
to “survive” a short interval t without suffering a change in charge, we find p(t) =
exp[−(Pe + Pi)t]. This result matches our earlier reasoning of mean free path in
Sect. 4.2.2 and mean free time in Sect. 4.3.4.

A comparison of the discrete charging model with the continuous charging pro-
cess (10.14) is shown in Fig. 10.8. The discrete model leads to charge fluctuations
about the equilibrium value. Furthermore, deviations from the equilibrium value
decay at the relaxation time (10.16), as becomes evident from comparing the behav-
ior of 10 nm and 50 nm radius particles in Fig. 10.8.

Extensive numerical studies in [255] have shown that the fluctuations of the
dust charge about its equilibrium value Zd are described by a standard deviation
δZd = 0.5Z1/2

d . In other words, the relative fluctuations of the dust charge δZd/Zd
decrease with increasing size of the dust particle.

Charge fluctuations can be responsible for the coexistence of positive and neg-
ative particles. This mechanism is efficient for small grains carrying only a few
elementary charges. The presence of oppositely charged grains then facilitates the
coagulation of small dust grains e.g., in plasma reactors for nano-powder production
[256]. However, as soon as the particles have grown to more than 25 nm radius, and
their charge exceeds about 40 elementary charges, charge fluctuations can no longer
produce grains of the opposite charge, and coagulation between particles of same
size is stopped. Opposite to powder production in plasma reactors, which yields a

Fig. 10.8 Discrete charging
of submicrometer particles
according to the model in
[255]. For comparison, the
continuum model is shown by
the light lines

–

–

–

–

–

–
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narrow size distribution, there is a wide distribution of particle sizes in astrophysical
situations, and agglomeration of small particles with larger particles is important as
long as the small particles can attain the opposite charge [257] by fluctuations or by
the flip-flop effect described in Sect. 10.1.2.

10.1.6 Influence of Dust Density on Dust Charge

Up to now, we have considered the charging of an isolated dust grain in a plasma
environment that provides inexhaustible charging currents. The situation is different
when a dust cloud contains many dust particles and the total dust charge becomes
comparable with the total positive ion charge. The quasineutrality of plasmas then
allows only for a small number ne of free electrons

ne = ni − Zdnd . (10.21)

The other electrons are bound to the dust particles.
When the dust particles are densely packed, the plasma potential Φc inside the

cloud between the dust grains may be different from the ambient plasma, where we
have chosen the potential as Φ0 = 0, as sketched in Fig. 10.9.

Let us assume that the electrons and ions in the dust cloud are in thermal equi-
librium with the ambient plasma. Then the electron and ion concentrations will be
governed by Boltzmann factors

ne = n∞ exp

(
eΦc

kBTe

)
ni = n∞ exp

(
− eΦc

kBTi

)
. (10.22)

The Boltzmann response of the electrons is a proven concepts for all plasmas. How-
ever, using the Boltzmann factor for the ions needs additional justification. In astro-
physical situations, plasma is produced in a volume, which is large compared to
the dust cloud and electrons and ions are transported over large distances before

Fig. 10.9 (a) Cartoon of a dust cloud embedded in a quasineutral plasma of density n∞ and poten-
tial Φ0 = 0. The dust cloud has an intergrain potential Φc, electron and ion densities ne and ni.
The dust has a density nd and surface potential Φf. (b) Sketch of the potential profile in a section
of the dust cloud
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they are finally lost by recombination at a surface. The ambient plasma acts as
an inexhaustible reservoir for the dust charging process. Moreover, in astrophys-
ical situations, except for the energetic particles in the Solar wind, the thermal
plasma often has Te ≈ Ti and the density adjustments by the Boltzmann factors are
moderate.

In laboratory plasmas, however, it is a better approximation to assume a fixed
ion density. The ion density is determined by the balance by ionization and losses
and some ionization occurs inside the dust cloud. Losses can be ambipolar diffusion
towards the walls or, in dense dust clouds, the charging currents of the dust particles,
which act as an “internal wall”.

10.1.6.1 Isothermal Plasma with Boltzmann Ions

Let us first consider the original model of an isothermal hydrogen plasma, which
was conceived for astrophysical dust clouds [258]. The values for electron and ion
density from (10.22) have to be used for calculating the charging currents for the
dust grains, assuming that the grain potential is negative

Ii = nieπa2
(

kBTi

2πmi

)1/2 [
1 − e(Φf − Φc)

kBTi

]
(10.23)

Ie = −neeπa2
(

kBTe

2πme

)1/2

exp

[
e(Φf − Φc)

kBTe

]
. (10.24)

Again, the expression in the bracket of (10.23) is the OML-factor that describes the
increase of the particle cross-section for ion attraction, see Fig. 10.4a, and the expo-
nential in (10.24) is the Boltzmann factor that represents the fraction of electrons
that overcomes the potential barrier for a repulsive potential, see Fig. 10.4b. Note
that in this model each dust particle receives its charging currents from its immediate
neighborhood, where the particle densities ne and ni, as well as the plasma potential
Φc differ from the values in the plasma encompassing the dust cloud. Then, the dust
grains will attain a floating potential Φf−Φc relative to the dust cloud potential and it
is this potential difference that determines the dust charge. Φf−Φc can considerably
deviate from the value given by (10.8) that an isolated dust grain attains in a plasma
with ne = ni.

Using again the normalized potential η = −eΦ/kBTe, the mass ratio μ =
mi/me, the temperature ratio τ = Te/Ti, and replacing the dust charge qd =
4πε0a(Φf − Φc), we obtain a coupled set of equations that describes the quasineu-
trality condition within the dust cloud (10.21) and the floating condition, Ii+ Ie = 0,
for the dust grains

0 = e−ηc − eτηc + P(ηf − ηc) (10.25)

0 = (μτ)−1/2[1 + τ(ηf − ηc)] − e−ηf−τηc . (10.26)
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P = A a (μm) nd/n∞ is the dimensionless dust density parameter introduced in
[258, 259], and A = 1 μm (4πε0kBTe/e2) = 695 Te (eV). A different interpretation
of the parameter P is

P = 3
a

λDe

(
4π

3
ndλ

3
De

)
, (10.27)

which relates the parameter P to the number of dust particles in an electron Debye
sphere. (10.25) and (10.26) are again solved numerically and give the dependence
of the cloud potential and grain floating potential as a function of the parameter P ,
as shown in Fig. 10.10 for typical conditions in space (hydrogen ion, Te/Ti = 1).

For P � 1, we recover the normalized floating potential ηf ≈ 2.5 of isolated
grains, which we had already discussed in Sect. 10.1.3.1. Remember that floating
means that a dust particle attains a sufficiently negative potential to reduce the elec-
tron flux to the same value as the ion flux to the particle, which makes the net electric
current zero. In this limit, the dust particles are well separated and hence there is no
distinction between the cloud potential Φc and the ambient plasma potential Φ0.
When the parameter P approaches unity, the normalized grain potential shows a
substantial reduction and the normalized cloud potential is found to increase. It is
not the reduction in the magnitude of the floating potential ηf, but the potential
difference ηf − ηc that demonstrates a reduction of the negative grain charge. For
P > 100, the grain potential reaches a final equilibrium value, ηf = ηc, in which
the charge per particle gets less and less because the total amount of charge in the
dust cloud is finite and has to be shared by ever more particles.

This limiting case follows immediately from the quasineutrality condition (10.25)
in the limit P → ∞. From (10.26) we obtain ηf = 1

4 ln(μτ) = 1
4 ln(mi/me) =

1.88. The Boltzmann equilibrium of the dust cloud with the ambient plasma then
leads to a reduction of the electron density by a factor of (mi/me)

1/4 = 6.55 and an
increase of the ion density by the same factor. In this final state, the net current from
the ambient plasma into the dust cloud is zero and the entire dust cloud is floating
in the ambient plasma.

Fig. 10.10 Normalized cloud
potential ηc and grain
potential ηf (solid lines) for
an isothermal hydrogen
plasma with Boltzmann ion
response as function of the
parameter P . The potential
difference ηf − ηc determines
the dust charge qd

––
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10.1.6.2 Non-isothermal Plasma with Fixed Ion Density

In a laboratory plasma with Te 
 Ti, the ions show no Boltzmann response. Rather
we assume that the ion density in the dust cloud is fixed at the same value n∞ as in
the surrounding plasma. Then the corresponding model equations become

0 = e−ηc − 1 + P(ηf − ηc) (10.28)

0 = (μτ)−1/2[1 + τ(ηf − ηc)] − e−ηf . (10.29)

This system behaves basically in the same manner (see Fig. 10.11) as the original
model with Boltzmann ions described above. When the parameter P reaches P ≈ 1,
the normalized cloud potential rises until it asymptotically reaches a final value of
ηc = (1/2) ln(μτ) = 7.905. At this value, the entire dust cloud floats in the ambient
plasma. At the same time the dust charge is becoming smaller and smaller.

At first glance, the increase of the floating potential of the cloud beyond the value
for a floating sphere is surprising. In Sect. 10.1.3.1, we had emphasized that the
floating potential of a small sphere is independent of its size. This puzzle is resolved
when we inspect (10.29), in which the OML factor [1+τ(ηf−ηc)] becomes unity for
vanishing dust charge. Therefore, the dust cloud as a whole does not benefit from
orbital motion. As a consequence, the electron current must be suppressed much
stronger, because it competes with a smaller ion current that is not enhanced by an
OML factor.

Fig. 10.11 Normalized cloud
potential ηc and grain
potential ηf for an argon
plasma with fixed ion density
and Te/Ti = 100 as a
function of the Havnes
parameter P . The dust charge
is determined by the
difference ηf − ηc

––

10.1.6.3 Charge Sharing

In the end, when the free electron density in the dust cloud becomes much smaller
than the ion density, we have a quasineutrality condition nd|qd| ≈ nie and, for fixed
ion density, the dust charge decreases as

|qd| = ni

nd
e . (10.30)
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Therefore, the dust grains must share among them the maximum allowed negative
charge. Any additional dust grain entering the cloud must steal its charge from the
neighbors.

10.2 Forces on Dust Particles

Dust particles experience various external forces that depend in different ways on
the size of the dust particle, as compiled in Table 10.2 [260]. Particles of several
micrometer size are dominated by gravity whereas submicron particles are more
susceptible to drag forces.

The interaction forces between dust particles are in most cases repulsive and can
be described by shielded Coulomb potentials. There are, however, situations with
streaming ions, where charging of the wake behind a dust particle can lead to net
attractive force between dust particles.

Table 10.2 External forces on dust particles

Name Origin Size dependence

Weight force gravity a3

Neutral drag streaming neutrals a2

Ion drag force streaming ions a2

Thermophoresis temperature gradient a2

Electric force electric field a1

10.2.1 Levitation and Confinement

The confinement of micrometer-sized dust particles inside the quasineutral plasma
is difficult. The ambipolar field is often insufficient to balance the weight of the
particle. For example, from (4.37) the ambipolar electric field in a plasma of
kBTe = 3 eV and a scale length L = (1/n)|∇n| ≈ 1 cm is E ≈ 300 V m−1.
Taking the dust charge from (10.13), we find an electric field force FE = qd E =
2.41 × 10−13N a(μm). This can be compared with the weight force of plastic
spheres, which are often used in laboratory experiments because they are avail-
able as monodisperse particles (i.e., with a narrow size distribution). For melamine-
formaldehyde (MF) particles (ρd = 1514 kg m−3) we obtain a weight force Fg =
6.22 × 10−14 [a (μm)]3. Figure 10.12 shows a comparison of these forces. The
intersections of the curves give the particle size that can be levitated by the assumed
ambipolar field. Therefore, experiments with particles confined in the bulk plasma,
where the ambipolar field is low, are restricted to particles of a < 1 μm, typically.
Larger particles will sediment to the bottom of the plasma, where the particles
are finally trapped by stronger electric fields in the sheath region between plasma
and wall (or electrode). Plasmas with steeper density gradients can levitate larger
particles.
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Fig. 10.12 Weight force Fg
and electric field force FE
from the ambipolar field of
E = 100 V m−1 and
E = 300 V m−1. The inset
shows an electron micrograph
of monodisperse spherical
melamine-formaldehyde
particles

–

10.2.1.1 Levitation in the Radio-Frequency Sheath

For many years, the workhorse of dusty plasma research in the laboratory was
a parallel plate discharge driven by a radio-frequency (rf) voltage at 13.56 MHz
(Fig. 10.13).

The discharge forms a central quasineutral bulk plasma and two sheath regions
that separate the plasma from the electrodes (Fig. 10.14). Details of this discharge
type are discussed in Sect. 11.2. Here, we need only know that the sheath region has
(on time-average) a net positive space charge.

The dust particles are too heavy to react to the rf electric field. Therefore, the
levitation of the dust particles is determined by the time-averaged electric field 〈E〉,
which is determined by Poisson’s equation d〈E〉/dz = 〈ρ〉/ε0. Experiments have
shown that the charge density 〈ρ〉 is nearly constant [261], which results in a linear
increase

〈E〉 ≈ 〈ρ〉
ε0

z . (10.31)

Fig. 10.13 A parallel plate
reactor with a grounded grid
electrode for obervation from
top (camera 1). The dust
particles are illuminated by a
horizontal sheet of laser light.
Camera 2 and a vertical laser
sheet are used for side-on
observations
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Fig. 10.14 Dust particles > 2 μm diameter sediment to the lower sheath of a radio-frequency oper-
ated parallel plate discharge, where the electric field force becomes sufficiently strong to balance
the weight of the particle and levitate the particles in a thin layer

It is important to distinguish the time-averaged behavior of the dust and the instan-
taneous plasma processes that affect the dust. A negative charging current reaches
the dust particles only during a short fraction of the rf cycle, when the electrode
becomes positive w.r.t. to the plasma, and electrons are able to flood the sheath
(see Sect. 11.2). Positive argon ions are also too heavy to follow the 13.56 MHz
excitation. Therefore, the ion density profile is stationary and the positive ion flow
to the dust particles is continuous. How does this affect the particle charge? Since
the charge relaxation time from (10.17) is shortest for large particles, we illustrate
the charging process for a large particle of a = 10 μm radius (Fig. 10.15).

For kBTe = 3 eV, n = 1015 m−3 and electron flooding of the sheath for 30%
of the cycle, the relaxation time (in the quasineutral bulk plasma) is τ = 1.8 μs.
Therefore, during the much shorter rf period of 74 ns (13.56 MHz) the dust grain acts
like an RC-integrator and the charging curve becomes fairly smooth with a minor
ripple from the charging—discharging during each rf cycle. For smaller particles,
this ripple becomes even smaller. In particular, all dust grains in the range of interest,
a = (1 − 10)μm attain a fixed electric charge. The value of this charge, however,
differs from the equilibrium charge (10.13) in a quasineutral environment.

Let us now return to the question of levitation. In the sheath, the (time averaged)
electric field is one or two orders of magnitude stronger than the ambipolar field.

Fig. 10.15 Charging of a dust
particle of a = 10 μm radius
in the sheath of a r.f. plasma
with ion density
ni = 1015 m−3, electron
temperature kBTe = 3 eV and
electron flooding of the
sheath for 30% of the cycle.
The relaxation time τ is much
larger longer than the rf cycle
of 74 ns

–

–

–

–
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It has a minimum value at the plasma boundary and a maximum at the electrode
(Fig. 10.14). Dust particles are levitated at a height z0 inside the sheath, where the
weight force and the electric force are balanced

− mdg + qd〈E(z0)〉 = 0 . (10.32)

This condition is similar to the levitation condition for an oil drop in the famous
experiments of Robert Millikan (1868–1953) that proved the quantization of the
electric charge, which won him the 1923 nobel prize. However, in Millikan’s exper-
iment, the electric field was independent of position while it is inhomogeneous in
the space charge sheath, with a linear increase from the plasma edge to the electrode.

10.2.1.2 The Vertical Resonance

The equation of motion for a dust particle in the sheath involves the position depen-
dence of the electric force

md z̈ + mdνd ż − qd E(z) = Fext(t) . (10.33)

Here, νd is the dust-neutral collision frequency, which describes the friction of dust
particles with the neutral gas. Such a friction coefficient was introduced by Epstein
[262] to describe the motion of the oil drops in Millikan’s experiment. Neutral drag
will be discussed below in Sect. 10.2.2.

When we make a linear approximation for the variation of the electric field

E(z) ≈ E(z0) + dE

dz
(z − z0) = E(z0) + 〈ρ〉

ε0
(z − z0) (10.34)

and assume that the dust charge qd is a fixed quantity, the equation of motion (10.33)
represents a damped harmonic oscillator with a fundamental frequency ω0 given by

ω2
0 = |qd| 〈ρ〉

ε0md
. (10.35)

The parabolic shape of the effective potential well 〈Wpot〉 (Fig. 10.14) results from
integrating the linear variation of the electric force qd E(z) and adding the potential
energy in the gravitational field mdgz. The energy minimum is at the equilibrium
position defined by (10.32).

The vertical resonance depends on the ratio qd/md and can be used to determine
the dust charge qd when the dust mass md is well known, as in the case of monodis-
perse MF particles. Since the resonance frequency depends on the net charge density
in the sheath, a measurement of the ion density in the plasma is necessary, which
then must be extrapolated into the sheath.
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Fig. 10.16 Excitation of the vertical resonance by radiation pressure from a laser diode. A spuri-
ous resonances from the harmonics of the square-wave excitation appears at 1/3 of the resonance
frequency (from [265])

The resonance curve can be recorded by applying an external force of fre-
quency f to the dust particles and recording the oscillation amplitude, as shown
in Fig. 10.16a. There are two ways to apply a force to the dust particles. In the
original version of the resonance method [263, 264], an additional low-frequency
bias voltage of (3–30) Hz frequency was added to the lower electrode, which leads
to a periodic shift of the boundary between plasma and sheath. The technique was
later refined in [265], where a focused diode laser was used that was chopped at
a frequency f and exerts a periodic force on a single dust particle by radiation
pressure.

The resonance curves obtained by the laser method is shown in Fig. 10.16b. The
squares are the experimental points, which are compared with the resonance curve
of a damped oscillator. The resonance frequency is fres ≈ 16 Hz. There is also a
spurious resonance at fres/3, which is caused by exciting the main resonance with
the harmonic of a square wave at 3 f . The theoretical curve comprises also spurious
resonances at fres/5 and fres/7, which are not resolved in the experiment.

The resulting dust charge is Zd = (8320 ± 2000) compared to Zd = 16000 from
(10.13) for a particle of 4.8 μm radius in a quasineutral plasma environment. The
difference can be attributed to the net electron depletion of the sheath [266].

10.2.1.3 Self-Excited Vertical Oscillations

Let us now consider the case of vertical oscillations with a variable dust charge. At
different positions in the sheath, the dust charge may attain an equilibrium charge,
which in linear approximation is given by

qeq
d (z) ≈ qd0 + q ′

dz . (10.36)
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qd0 is the equilibrium charge at the levitation position defined by qd0 E(z0) = mdg.
When the dust particle oscillates in the sheath, the dust charge lags behind due to
the finite charge relaxation time. The evolution of the dust charge is described by

q̇d = − 1

τ

[
qd(z) − qeq

d (z)
] = − 1

τ

[
qd(z) − qd0 − q ′

dz
]
. (10.37)

Solving this charging equation together with the equation of motion (10.33) by a
normal mode analysis ∝ exp(−iωt) [267], gives unstable solutions with a growth
rate

γ = Im(ω) = −1

2

(
β + q ′

d E(z0)τ

md

)
, (10.38)

when the term in parentheses on the r.h.s. becomes positive. This happens for
q ′

d E(z0) < 0 and β < |q ′
d E(z0)|τ/md.

Avoiding the tedious mathematics that leads to (10.38), we can grasp the basic
physical mechanism of the instability by considering a dust particle during its verti-
cal oscillation when it crosses z0 with velocity v. To estimate the order of magnitude
of the surplus charge, we go back in time by one charging time τ , when the parti-
cle was at z1 = z0 − vτ . There, the equilibrium charge deviates from that at z0
by �qd = −q ′

dvτ . Superimposed to its periodic motion in the potential well, the
particle experiences an extra force from the surplus charge

�F ≈ �qd E(z0) = −q ′
dvτ E(z0) . (10.39)

For instability, this extra force must overcome the frictional force βmdv, which
defines a critical friction coefficient

βc = |q ′
d E(z0)| τ

md
(10.40)

in accordance with the discussion of (10.38).
Unstable vertical oscillations were first reported in [268]. The instability is

favoured by high values of q ′
d, which are found in the sheath of dc-discharges. There,

electrons can only penetrate the sheath in terms of a Boltzmann factor, which pre-
vents the presence of electrons deep inside the sheath. Contrariwise, in rf discharges,
electrons even reach the electrode for a fraction of each rf cycle, and q ′

d takes more
moderate values. This is why this instability was only observed in dc discharges.
Self-excited oscillations of finite amplitude were also found in [269], as shown in
Fig. 10.17. There, a constant amplitude of the oscillations results from higher order
corrections in the Taylor expansion of the electric field and the charge as functions
of vertical position.
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Fig. 10.17 Self-excited vertical oscillations of a particle in the sheath of a dc discharge, which is
moving horizontally from left to right. This photo has an exposure time of 0.88 s. (Reproduced
with permission from [269]. c©1999 by the American Physical Society)

10.2.1.4 Confinement Geometries

Because of the mutual repulsion of like-charged dust grains, a dust cloud can only
exist in a particle trap which provides confinement of the dust particles from all
sides. The vertical confinement in the space-charge sheath by parabolic potential
wells was discussed in Sect. 10.2.1.2. Horizontal confinement can be achieved by
bending the equipotential upwards, on which the particle is levitated.

The thickness of the space-charge sheath is basically determined by the Child-
Langmuir law (7.12). Therefore, a radial decay of the plasma density profile results
in a wider space charge sheath at lower electron density, which leads to an effective
upward bending of the equipotential, see Fig. 10.18a. Metallic barriers arranged on
the electrode have a similar effect and lead to radial electric field forces near the
barrier, as shown in Fig. 10.18b. When a parabolic confining potential is needed,
a shallow spherical depression in the electrode can shape the equipotentials, see
Fig. 10.18c. The levitation and confinement of Yukawa balls (Sect. 10.3.3) is
achieved by a combination of the thermophoretic force from a temperature gra-
dient in the neutral gas (due to heating of the electrode) with radial electric forces
originating from a sheath around the confining glass walls of a small box, as shown
in Fig. 10.18d.

Fig. 10.18 (a) Curved
equipotential due to sheath
expansion caused by a radial
density gradient. (b) Bending
of equipotentials by metal
barriers. (c) Parabolic
depression in electrode. (d)
Levitation by thermophoretic
forces and confinement in a
glass box by electric forces
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10.2.2 Neutral Drag Force

The neutral drag force played an important historical role in Millikan’s famous oil
drop experiments that demonstrated the quantization of the electric charge. Epstein
[262] had analyzed the drag force for various kinds of collision types between
neutral gas atoms and oil drops, for which he introduced an accomodation coef-
ficient δ. The neutral drag force for a spherical dust grain of radius a is given by the
expression

Fn = −4

3
δπa2nnvth,n(vd − vn) . (10.41)

Here, vd ist the dust velocity, vth,n the mean thermal velocity of the neutral gas, and
vn � vth,n the drift velocity of the neutral gas. The coefficient δ has the values

δ =
{

1 : specular reflection
1 + π/8 : perfect diffuse reflection ,

(10.42)

which can be considered as the limiting cases for the reflection process. Refinements
for the drag force were discussed in [237].

Instead of calculating the force that a neutral wind of velocity vn exerts on a
dust particle at rest, we can also ask for the friction force on a dust particle that
moves with velocity vd through a neutral gas at rest. Both situations are described
by (10.41). However, it is practical to express the friction force by a dust-neutral
collision frequency νd for momentum loss, which is defined by Fn = νdmd(vd −vn)

and reads

νd = δ
4

3
πa2 mn

md
nnvth,n = δ

8

π

p

aρdvth,n
. (10.43)

Here, p is the gas pressure and ρd the density of the dust material. Note that νd is
not the frequency at which neutral atoms hit the dust particle.

10.2.3 Thermophoretic Force

If there is a gradient of gas temperature in the vicinity of a particle, collisions of neu-
trals with the dust particles will on average impart more momentum to the particle
on the hot side than on the cold side. This transfer of a net momentum from the gas
to the particle is called thermophoresis. The thermophoretic force is proportional
to the temperature gradient and is directed from the higher gas temperature region
to the lower gas temperature region. In dusty plasmas, thermophoretic effects were
first observed by Jellum and Graves [270]. An analytical expression for the ther-
mophoretic force is [271, 272]
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Ftp ≈ −8a2nnλckB∇Tn (10.44)

where λc is the average collision length in the gas, and Tn the gas temperature. This
expression is valid for gas temperatures, Tn < 500 K, and when the distance of the
dust particles from the walls is much larger than a mean free path.

10.2.4 Ion Wind Forces

The orbital motion of a positive ion with initial velocity v0 in the field of a negatively
charged dust particle can lead to a collision with the dust particle when the impact
parameter is smaller than the collection radius (7.54), bc = a(1 − 2eΦ/mv2

0)
1/2.

Larger impact parameters lead to scattering of ions (see Fig. 10.19). In both cases,
momentum is transferred to the dust particle. Averaging the transferred momentum
over the ion distribution function yields the ion wind force on the dust particle,
which consists of a collection force and an orbit force [260]

Fi = Fc + Fo . (10.45)

10.2.4.1 The Collection Force

For monoenergetic ions, the collection force is given by the momentum flux entering
the collection cross section σc = πb2

c

Fc = ni (mi v0) v0︸ ︷︷ ︸
momentum flux density

σc = ni miv
2
0πa2

(
1 − 2eΦf

miv
2
0

)
. (10.46)

One could ask, why the incoming momentum flux is calculated from the original
velocity v0 of an ion far away from the dust particle. In fact, the ion is accelerated by

Fig. 10.19 (a) Ion collection
and ion scattering by a dust
particle. (b) In a scattering
event, the momentum
�p = p[1 − cos(χ)] is
transfered to the dust particle
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the attractive force F exerted by the dust particle. Before reaching the surface of the
dust particle, the ion has gained an extra momentum δp = ∫

Fdt . However, the dust
grain has also gained a momentum, −δp, because of Newton’s actio = reactio law.
When the ion hits the dust particle, the ion transfers the gained extra momentum to
the dust particle and the original situation is restored. Hence, our calculation based
on the unpertubed ion velocity is correct.

For a shifted Maxwellian ion-distribution with a drift velocity vd,

fM(v) = ni

(
mi

2πkBTi

)3/2

exp

[
−mi(v − vd)

2

2kBTi

]
, (10.47)

the average collection force becomes [260]

〈
Fc

〉 = nimivdvsπa2
(

1 − 2eΦf

miv2
s

)
(10.48)

with

v2
s = v2

d + 8kBTi

πmi
. (10.49)

Again, the average momentum density is nimivd, but the number of collision pro-
cesses per second is determined by vs, which becomes the mean thermal speed for
small drift velocities. The collection force can be described by the limiting cases of
Stokes friction, Fc ∝ vd, at low drift velocity, and of aerodynamic ram pressure,
Fc ∝ v2

d, at high drift velocity.

10.2.4.2 The Orbit Force

When an ion is deflected in the field of a heavy dust particle, the ion momentum
changes direction, but the magnitude is conserved, |p| = |p′|, see Fig. 10.19b. For
a scattering angle χ , the transferred momentum is

�p = p[1 − cos(χ)] . (10.50)

A general statement about the ion orbit in the shielded potential Φ(r) of a dust grain
can be made from the conservation of energy W and angular momentum L ,

W = mi

2
v2

0 = mi

2
(ṙ2 + r2θ̇2) + eΦ(r) (10.51)

L = m iv0b = mir
2θ̇2 . (10.52)

Spherical coordinates r, θ are used in the following, as defined in Fig. 10.20.
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r
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dbv0 rminθmin

χ χ + dχ

θ

Fig. 10.20 Spherical coordinates r , θ are used to describe the ion trajectory. An increase of the
impact parameter b → b + db leads to a smaller scattering angle χ + dχ

Replacing θ̇ = v0b/r2 in (10.51), the energy equation becomes

W = mi

2

[
ṙ2 + L2

m2
i r2

]
+ eΦ(r) . (10.53)

The minimum distance rmin of the orbit can be found by setting ṙ = 0 and solving
the resulting quadratic equation with the result (see Problem 10.4)

rmin = −rC +
√

r2
C + b2 , (10.54)

where we have introduced the Coulomb radius

rC = −qde

4πε0miv
2
0

. (10.55)

For the further calculations, we must now specify the interaction potential Φ(r).
The particle orbit during this scattering process becomes a hyperbola when the
interaction between ion and dust grain can be described by a Coulomb force. This
assumption is valid when the impact parameter b of the incoming ion is smaller
than the shielding length λs of the dust grain. For small ion velocities, v0 � vB ,
the shielding length is given by the linearized Debye length, λs = λD. However,
for larger ion speeds, shielding by streaming ions is better described by a modified
Debye shielding length [273]

λs = λDe

1 + kBTe/(kBTi + miv
2
0)
. (10.56)

For b < λs, the scattering problem is equivalent to the Kepler orbit of a comet in the
central field of the Sun. Therefore, we can use the standard textbook result for the
scattering angle, χ = 2θmin − π , and obtain

tan
(χ

2

)
= rC

b
. (10.57)
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When the impact parameter equals the Coulomb radius, b = rC, the scattering angle
becomes χ = π/2. Therefore, the Coulomb radius is the impact parameter for 90◦
scattering, rC = bπ/2, which was already defined in (4.20). To calculate the orbit
force, we must introduce a proper average of the momentum transfer (10.50) over
all impact parameters

Fo =
〈

dp

dt

〉
b

=
〈

niv0
dσ

dΩ︸ ︷︷ ︸
events per second

× miv0(1 − cosχ)︸ ︷︷ ︸
momentum transfer

〉

b

. (10.58)

Here, dσ/dΩ is the differential cross section for a scattering event with a scattering
angle χ into a fraction dΩ of solid angle. The concept of a differential cross section
assigns to the scattering process a ring-shaped area dσ (see Fig. 10.20) that defines
the number of scattering events per second, as given by the first factor in (10.58).
The calculation of dσ/dΩ involves the relation (10.57) between scattering angle χ

and impact parameter b. We have dσ = 2πbdb and dΩ = |2π sinχdχ |. In the
latter expression the magnitude has to be taken because dχ/db < 0. Then we obtain
for the differential cross section

dσ

dΩ
= b

sinχ

∣∣∣∣ db

dχ

∣∣∣∣ = r2
C

sin4(χ/2)
, (10.59)

which is the well-known Rutherford cross-section that was originally derived for
(repulsive) scattering of α-particles on gold atoms. Using this expression, the orbit
force becomes

Fo = nimiv
2
0 2π

χmax∫
χmin

(1 − cosχ)
dσ

dΩ
sinχ dχ = nimiv

2
0 4πr2

C lnΛ . (10.60)

In this calculation, we have to cut off the integration at a smallest scattering angle
χmin that corresponds to the maximum allowed impact parameter, b = λs, and a
maximum angle χmax determined by the collection radius, b = bc. The quantity
lnΛ = ln(sinχmax/ sinχmin) is called the Coulomb logarithm, which under the
present assumptions takes the form

lnΛ = 1

2
ln

(
λ2

s + r2
C

b2
c + r2

C

)
. (10.61)

Again, when we average over a shifted Maxwellian, the momentum flux can be
approximately replaced by nimiv0 vs. At last, we obtain the total ion drag force as
[260]

〈Fd〉 = nimiv0vs
(
πb2

c + 4πb2
π/2 lnΛ

)
. (10.62)
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Fig. 10.21 The total ion drag
force (solid line) and its
constituents, the orbit force
(dotted line) and collection
force (dashed line) as a
function of the normalized
ion streaming velocity

The dependence of the ion drag force on the ion drift velocity is shown in Fig. 10.21
for argon ions, λs/a = 10, and Te/Ti = 100. For small drift velocities of the order
of the Bohm velocity vB, the orbit force is dominant. The collection force becomes
important for v0 
 vB . Since the maximum of the orbit force occurs near v0 ≈ vB ,
the proper choice of the shielding length is λs ≈ 2

3λDe.
For completeness, it should be mentioned that more precise expressions for the

Coulomb logarithm have been introduced that allow for 90◦ scattering of slow ions
that have impact parameters greater than λD [274–276]. Approximations to the full
non-Keplerian scattering process were obtained from computer simulations [273,
277]. A short discussion of these aspects can be found in [235].

10.2.4.3 Experiments on the Ion Drag Force

The ion drag force has been investigated systematically using the deflection of
falling dust particles [278, 279]. There, the influence of ion drag, electric and ther-
mophoretic force was analyzed after the dust particles had reached the terminal
velocity that is given by the balance of weight force and neutral drag. The deflec-
tion method was also applied in the collisionless plasma of a double-plasma device
[280]. There, the deflection angle is given by tanα = Fd/Fg. The experimental
arrangement is sketched in Fig. 10.22a.

The experiments were performed in two different modes. A high-velocity ion
beam could be generated by applying a bias voltage between the source chamber
(S) and target chamber (T). In this limit, the ion drag is determined by the collection
force, which is identical in all ion drag models. Figure 10.22b shows how the col-
lection radius derived from the measured ion drag force approaches the limit given
by the particle radius.

The more interesting situation is found at low ion drift velocities, where sig-
nificant differences are found between the models [260] and [275]. This drift is
generated by a negative bias voltage on the separation grid and operating source
and target chamber at the same plasma potential. In Fig. 10.22c the experimental
points indeed come closer to the refined model by Khrapak et al. [275]. However,
the model by Barnes et al. [260] with a proper shielding length is not far off. This
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Fig. 10.22 (a) Deflection of falling dust particles by an ion beam generated in a double-plasma
device. (b) Resulting collection radius bc as a function of beam energy. (c) Deflection of falling
dust grains by a slow ion drift towards the grid in comparison with the models of Barnes et al.
[260] and Khrapak et al. [275] (from [280])

confirms that the simplified treatment in Sect. 10.2.4.2 is able to catch the essential
features of ion drag.

10.2.4.4 Dust-free Regions (Voids)

Equilibria of dust clouds involving ion drag and electric forces become important
when gravity plays a minor role. This can occur in the laboratory for fine parti-
cles of less than 1 μm diameter or for larger particles in experiments under micro-
gravity. (A state similar to microgravity can be established by compensating the
weight force by a thermophoretic force.) These equilibria require only weak electric
fields such as those associated with ambipolar diffusion, because the orbit force
becomes large in the regime 0.3 vB < v0 < vB, which is typical of the presheath
region.

A characteristic effect of this kind is the formation of dust-free regions (voids),
which were found in discharges with fine particles [283] and in a dusty plasma
on a sounding rocket [281]. An example for the void phenomenon is shown in
Fig. 10.23a.

The highest ion density is found in the plasma center and a density profile ni(r, z)
is formed by ambipolar diffusion. The density gradient is steepest near the electrodes
and zero in the plasma center. As a consequence, the ambipolar electric field (4.37)



290 10 Dusty Plasmas

Fig. 10.23 (a) Dust free region in the center of a rf-driven parallel plate discharge under micro-
gravity (inverted image). The motion of the dust particles becomes visible from the superposition
of 150 video frames covering 3 s. (Reprinted with permission from [281]. c©1999 by the American
Physica Society.) (b) Dust void around a negatively biased Langmuir probe under micro-g (from
[282])

Fig. 10.24 Stable equilibrium
point between electric field
force and ion drag force

and the ion drift velocity vi = μi E increase from the center to the electrodes. The
general dependence of the ion drag force and the electric field force on the local
ion velocity is shown in Fig. 10.24. Here, the electric field force FE = qdvi/μi
is related to the ion velocity through the ion mobility. The ion drag force points
radially outward whereas the electric field force pushes the dust particles towards
the center.

The equilibrium position for a single particle is found at the intersection of the
two curves in Fig. 10.24. This equilibrium is stable because an outward directed
perturbation leads into a region of higher ion velocity where the dominating electric
field force pushes the particle back. Similarly, an inward directed perturbation is
corrected by the net excess force from ion drag.

A reversed situation for void formation is found near a negatively biased probe
[282, 284], as shown in Fig. 10.23b. There, the ion velocity takes its highest values
near the probe and the electric field force becomes dominant. Hence, the negative
dust is effectively repelled by the negative probe bias creating a dust-free region
near the probe. On the other hand, at larger distances, the ion velocity is lower than
the critical value and the ion-drag force pushes dust towards the probe forming a
stable dust ring around the probe.
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10.2.5 Interparticle Forces

The repulsion between two highly-charged dust grains at a distance r12 can be
described by a shielded interaction energy corresponding to a Yukawa or Debye-
Hückel potential (2.27) with a shielding length λs,

WY(r12) = q2
d

4πε0r12
exp

(
−r12

λs

)
. (10.63)

The shielding length λs can have different values depending on the environment
of the dust grain. For dust monolayers suspended in the sheath, λs describes the
interaction in the horizontal direction. Because of the ion streaming velocity, which
exceeds the Bohm velocity in the sheath, the shielding length is given by (10.56)
and is of the order of the electron Debye length. The directed ion flow in the sheath,
however, makes shielding highly anisotropic. Therefore, this value of λs does not
describe the interaction in the vertical direction, which we will discuss separately in
Sect. 10.3.2.

The situation is different for dust grains in the bulk plasma. Here, shielding can
be considered as isotropic and the shielding length is close to the linearized Debye
length, λs ≈ λD. Small deviations from this limit are due to the nonlinearity of
the shielding process [285], which violates the assumption of the classical Debye-
Hückel model (2.18) that |eΦ| � kBTi.

The corresponding repulsive force between identical dust particles with Yukawa
interaction potential is

FY(r12) = − q2
d

4πε0r2
12

(
1 + r12

λs

)
exp

(
−r12

λs

)
. (10.64)

10.2.5.1 Particle Pairs in a Horizontal Parabolic Potential Well

The interaction force can be measured by studying pairs of dust particles confined
in a parabolic potential trap with an electric potential energy

Wpot(r) = 1

2
mdω

2
0r2 , (10.65)

as shown in Fig. 10.25. The total force equilibrium is characterized by FE = −(Fg+
F12), in which the electric field force from the curved equipotential is balanced by
the sum of the weight force and the repulsive force between the particles.

Looking only at the horizontal components of the forces, the restoring force
exerted by the potential trap becomes the horizontal component of FE , which
results in

Ftrap(r) = −mdω
2
0r . (10.66)
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Fig. 10.25 (a) Equilibrium positions of two identical dust particles in a parabolic trap. The full line
represents the shape of the electrode, the dashed line is the equipotential on which the particles are
confined. (b) Eigenmodes of the two-particle system: sloshing mode, (c) breathing mode

The eigenfrequency of the potential well is ω0. Then the equilibrium distance d is
defined by the force balance

q2
d

4πε0 d2

(
1 + d

λs

)
exp

(
− d

λs

)
= mdω

2
0

d

2
. (10.67)

This equation contains only two unknowns, the dust charge qd and the shielding
length λs. The mass of the particles can be chosen at will by using monodisperse
plastic spheres. The eigenfrequency ω0 can be determined from the (damped) oscil-
lation of a single particle after an initial perturbation. There are now several ways
to extract the dust charge and shielding length from experiments with pairs of parti-
cles.

1. A first estimate of the dust charge can be obtained by inserting the expected
shielding length from (10.56) and solving (10.64) for qd.

2. In [286] head-on collisions of two identical particles were used to excite cou-
pled oscillations of the two-particle system. The two natural frequencies are the
sloshing mode at ω0, which is independent of λs, and the symmetric breathing
mode, which depends on λs.

3. Normal modes can also be extracted from a Fourier analysis of the Brownian
motion of the trapped particles [287].
From (10.64) the equilibrium distance for an unshielded particle (λs → ∞) is

d0 =
(

q2
d

2πε0mω2
0

)1/3

. (10.68)

It can easily be shown (problem 10.5) that the breathing mode for an unshielded
particle pair in a parabolic potential well is given by

ωbr = √
3ω0 . (10.69)

For shielded interaction, the equilibrium distance decreases with increasing
shielding factor κ = d0/λs, i.e., shrinking shielding length (see Fig. 10.26). The
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Fig. 10.26 Equilibrium
positions d/d0 of small dust
clusters in a parabolic trap
potential and breathing
frequency ω/ω0 for each
equlilibrium position

–

frequency of the breathing mode at each of these equilibrium positions, however,
increases with κ . This reflects the stiffening of the shielded confinement potential.

10.2.5.2 Small Two-Dimensional Clusters

When a small number of dust particles is levitated in a monolayer with radial con-
finement by a parabolic potential trap, the particles arrange themselves in regular
clusters. The configurations for N = 1 to N = 10 are shown in Fig. 10.27. The
structure of the arrangements is characterized by the formation of distinct shells.
The transition from N = 5 to N = 6 introduces a new inner shell with one particle
in the center, whereas the former shell of five particles in the N = 5 cluster becomes
now the outer shell. The shell occupation numbers are denoted as (1,5). The second
particle in the inner shell appears for N = 9, which has the configuration (2,7).

The ground states of these 2-D Coulomb clusters have been calculated with
the aid of Monte Carlo simulations for pure Coulomb interaction in [288] and for
shielded Yukawa interaction in [289]. The shell formation suggests the analogy to
a Mendeleev table of atomic shell structure. The influence of shielding is found at

Fig. 10.27 Equilibrium configurations of small dust clusters in a parabolic potential trap
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Fig. 10.28 (a) Experimental arrangement for excitation of intershell rotation. (b) Time-averaged
trajectories over 220 s (inverted image) for a cluster with N = 19 (1,6,12), (c) same, but corrected
for rotation. (d) same as (b) but N = 20 (1,7,12), (e) corrected for rotation of the middle shell
(from [291])

κ > 2, when the N = 10 cluster changes from the (2,8) to the (3,7) configuration or
the N = 19 cluster, which changes from (1,6,12) to (1,7,11). Apparently, increased
shielding makes it energetically favourable to move particles from outer shells to
inner shells.

The lowest excited state of small clusters is the intershell rotation mode [290].
An experimental test of the cluster stability was made by Klindworth et al. [291].
The cluster with configuration N = 19 (1,6,12) is highly symmetric and has a high
energy barrier for intershell rotation. The next larger cluster N = 20 (1,7,12) has an
incommensurate number of particles in the two outer shells. Therefore, the energy
barrier for intershell rotation is low. The intershell rotation is excited by a pair of
laser beams, which exert a torque on the particles in the outer shell, see Fig. 10.28a.
The resulting cluster rotation is observed from top through an interference filter that
discriminates the scattered light of the illumination laser (632 nm) from that of the
manipulation laser (690 nm), and from the plasma glow.

Figure 10.28c shows that the N = 19 cluster rotates as a solid object. This means
that the torque on the outer shell is efficiently communicated to the middle shell.
Note that all particles move against friction with the neutral gas. For the N = 20
cluster, the outer shell develops a differential rotation w.r.t. the middle shell, which
is slowed down by friction, as seen in Fig. 10.28e.

10.3 Plasma Crystals

The formation of regular particle arragements of charged particles is a feature of
strongly coupled systems, when the Coulomb coupling parameter of the dust system

Γ = q2
d

4πε0aWSkBTd
> 200 (10.70)
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(see Sect. 2.1.3 for a discussion of Γ ). Such conditions are found in laser-cooled
ion-crystals (with qd = e) [292–295] or in colloidal suspensions [296–299].
Crystallization of the dust sub-system in a dusty plasma had been predicted by
Ikezi in 1986 [300] and experimentally verified, in 1994, by various groups
[32–34].

10.3.1 Experimental Observations

Monolayer and mulitilayer plasma crystals are formed in the sheath of capacitively
coupled rf-discharges (Fig. 10.29). The plasma crystals are observed with video
cameras from top and from the side. Monolayer and bilayer crystals form hexagonal
patterns in the plane. Hexagonal order was already found in small 2-D clusters as
the energetically favored structure.

A surprising result was the observation in bilayers that the particles in the two
layers are vertically aligned rather than being stacked like oranges in bcc or fcc pat-
terns [301]. This observation was the first hint at additional attractive forces between
like-charged dust grains.

The formation of vertically aligned particle chains is typical of dust confinement
in the sheath [32, 264, 302]. Extremley long chains of dust particles, containing up
to 25 particles, were reported from an electrodeless rf discharge [303]. At higher
pressures, other authors found typical bulk order with fcc, bcc or hcp structure
[35, 304] (see Fig. 10.30). Such 3-D reconstructions of the crystal structure are
obtained from a vertical scan. For this purpose the laser generating the horizon-
tal laser sheet and the top-view camera were mounted on a vertical translation
stage.

CCD-
camera 1

CCD-
camera 2

grounded grid

laser
diode 1

laser
diode 2

powered
electrode

dust
particles

Fig. 10.29 Observation of a two-layer dust cloud from top and from the side. The dust particles are
illuminated by a thin layer of laser light. The vertically aligned order is observed for p < 100 Pa
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Fig. 10.30 Bulk order (bcc)
in multilayer plasma crystal
at a pressure of 186 Pa
(krypton). The inset at the top
left corner shows a top view
of the crystal. (Reprinted with
permission from [35]. c©1996
by the American Physical
Society)

10.3.2 The Role of Ion Wakes

Attraction between like-charged (negative) dust particles was attributed to the scat-
tering of the supersonic ion flow in the sheath region by a dust particle that leads
to the formation of positive charges in the wake behind the particle. A cartoon of
ion focusing is shown in Fig. 10.31a. This effect can be alternatively described in a
particle picture or in a wave picture.

A first theoretical model was based on collective attraction by the exchange of
ion-acoustic waves in a stationary plasma [305], the mechanism being similar to
Cooper pairing in superconductivity. Alternatively, the focusing of the ion flow by
Coulomb scattering on the dust particles was studied by collisionless fluid simula-
tions [306]. Here, the upper particle was considered to act like an electrostatic lens

Fig. 10.31 (a) The
supersonic ion beam is
deflected by the upper
particle and generates a net
positive charge in the wake,
which exerts an attractive
force on the lower particle.
(b) An obstacle in a flow with
mach number
M = v/vB = 1.5 creates a
Mach cone with internal
interference pattern. (c) In a
pair of dust particles, the
upper particle drags the lower
particle against friction. (d)
Exploration of the attractive
force by a test particle
moving below the ion focus
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that forms a positively charged ion focus in the wake of the particle. Molecular-
dynamics simulations [301, 307] demonstrated that this ion focus is fairly robust
against ion-neutral collisions, and that the vertically aligned structure is energeti-
cally favoured over densely packed structures.

Furthermore, it was concluded that the attractive interaction must be non-reci-
procal. This can be understood in terms of the sound barrier: information about
the presence of an obstacle in the flow can only be communicated downstream. In
the sheath region of the plasma, where the microparticles are suspended, the ion
flow is supersonic, i.e., the speed exceeds the ion acoustic or Bohm velocity, vB.
A (negatively charged) particle upstream can exert an attractive force on a like-
charged particle in the downstream direction by forming a positive net charge in the
ion focus. The particle located downstream, however, cannot modify the supersonic
flow on the upstream side. Hence, the ion flow mediates no attractive force on the
upper particle. Rather, the upper particle is only pushed upwards by the repulsive
force from the lower particle.

The potential structure within the particle wake was studied by several authors
using linear response theory, e.g., [305, 308, 309] or by simulations [310–312]. It
was conjectured [308] that the regular pattern of potential minima in the wake—see
Fig. 10.31b—could be responsible for the transverse structure of plasma crystals. A
proper kinetic treatment of the ion-acoustic waves, including Landau damping and
ion-neutral collisions, was given in [309].

Those authors found that, in the presence of collisions, the oscillatory wave pat-
tern is preserved on the axis of the wake (ρ = 0 in Fig. 10.31b) while the transverse
interference maxima and minima disappear. The position of the first minimum in
the wake is located at z = 1.2λDe (dark region) and is nearly unchanged from its
position in the collisionless model [285]. In this way, the wave picture confirms the
conclusion from calculations of the ion trajectory that the ion focus is fairly robust
against collisions.

There was general agreement that the accumulated positive charge is the reason
for the vertical alignment of microparticles. However, it was pointed out [313] that
a second force contributes to alignment, which results from the deflected ion flow
pattern in the wake. The convergent ion flow pattern in the wake pushes the lower
particle from any off-axis position back towards the symmetry axis of the system.

Experimental evidence for wakefield attraction was found by means of laser
manipulation [302]. When, in a vertical chain of particles, an upper particle is
pushed sideways by the radiation pressure of a focused laser beam, the entire chain
follows the motion of the upper particle. In a similar manner, particle pairs of
slightly different mass were studied [314], which could move freely within their
respective levitation plane and formed a “dust molecule”, see Fig. 10.31c. By com-
paring the response to the laser force on the upper and lower particle, it could be
proved that the attractive force is indeed non-reciprocal. Moreover, a quantitative
analysis of the particle motion yielded the net attractive force between the particles
[315]. In addition, the formation of an ion focus could be suppressed by increasing
the ion-neutral collision rate. The destruction of wakefield attraction by ion-neutral
collisions explains the existence of densely packed crystal configurations [35, 304]
at higher gas pressures.
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Fig. 10.32 (a) Attractive force on a test particle by the wake charge. (b). Repulsive force by upper
particle. (Reprinted with permission from [316]. c©2003 by the American Physical Society)

A second quantitative experiment to measure the attractive and repulsive forces
involved the collision dynamics between suspended particles [316, 317]. In these
experiments, a curved electrode provided a radial restoring force, see Fig. 10.31d.
While the upper particle was initially at rest, a second particle of higher mass was
released from an off-axis position and moved in its own curved levitation plane
under the combined repulsion from the upper particle and attraction from the wake
charge.

Typical results for the attractive and repulsive force are shown in Fig. 10.32.
Here, |x2 − x1| is the horizontal distance of the particles, and r12 the magnitude
of the interparticle distance. The maximum attractive force was found about two
times higher than the repulsive force, which is sufficient for the formation of a dust
molecule.

10.3.3 Coulomb and Yukawa Balls

Spherical plasma crystals, named Yukawa balls were discovered in 2004 [36] when
a cloud of dust particles was levitated by the thermophoretic force from a vertical
temperature gradient in the gas, and was confined by nearby glass walls. By balanc-
ing a large part of the weight force by the thermophoretic force, the dust cloud is
embedded in the quasi-neutral bulk plasma, where effects from streaming ions, like
wake charging, are minimal. Therefore, the dust confinement is nearly isotropic.

Figure 10.33a,b shows the experimental arrangement and the camera system for
scanning video microscopy. For different temperatures of the heated lower elec-
trode, prolate, spherical or oblate dust clouds can be generated.

Different from multilayer crystals suspended in the sheath region of radio-
frequency discharges [35, 304], which show bulk order with fcc, bcc or hcp struc-
ture, Yukawa balls possess a nested shell structure with mostly hexagonal order on
the shells, see Fig. 10.34a,b. The shell structure becomes obvious by plotting all
particle positions in a ρ–z plane, thereby ignoring the angular position ϕ. A detailed
analysis of the force field [242] showed that Yukawa balls are confined in a spherical
harmonic trap.
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Fig. 10.33 (a) Experimental arrangement for generating Yukawa balls by thermophoretic levita-
tion. (b) Camera and laser for scanning video microscopy. (c) Yukawa balls for different tempera-
ture gradients (from [36, 242])

Fig. 10.34 (a) Voronoi cells
on the surface of a Yukawa
ball. (b) Shell structure (from
[36])
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Much insight into the building principles of Yukawa balls was gained from com-
puter simulations of trapped particles that interact via a Yukawa potential [318–
322, 234].

10.3.4 A Simple Model for the Structure of Yukawa Balls

In this paragraph, we will study the influence of shielded interaction on the structure
of dust balls compared to spherical clusters of laser-cooled ions, which have a pure
Coulomb interaction. For this purpose, we must study the interaction of individual
particles with charged shells. For an interaction force like the Coulomb force that
decrease as r−2, the force on a test charge in a charged hollow sphere vanishes,
see Fig. 10.35a. This can be understood from the fact that the contributions to the
repulsive force from opposite sides of the sphere involve equal solid angles dΩ but
different radii, R + a and R − a, that define surface elements, dA = dΩ(R + a)2

and dA′ = dΩ(R − a)2, and corresponding charges, Q = σdA and Q′ = σdA′,
σ being the charge per area. However, the inverse square law of the Coulomb force
just cancels the different charge values. Consequently, the forces from both sides
are exactly the same for every position inside a charged shell.

This is quite different for shielded interaction, for which the shielding factor
always favours the repulsive force from that side of the spherical shell which is
nearest to the test particle. Hence, for Yukawa interaction, the net force on a test
particle always points to the center of the shell.

Let us now consider a spherical assembly of N particles, each carrying a charge
qd, that are confined in a parabolic potential well Vt(r) = (1/2)αr2 and interact
pairwise, either by a repulsive Coulomb force FC(ri j ) = Q2/(4πε0r2

i j ) or by a
shielded Yukawa force (10.64). For pure Coulomb interaction, the force on a test
particle at radius r is only determined by those particles, which have positions r1 ≤
r , as shown by the shaded area in Fig. 10.35b. Again, for an inverse square law, this
charge distribution can be replaced by a point charge in the center of the sphere. The

Fig. 10.35 (a) In a Yukawa ball, a hollow shell exerts a net force on a particle that pushes it
towards the center. (b) In a Coulomb ball, a particle experiences only a net force from shells with
r1 < r while outer (hollow) shells give no net force. (c) The interaction of a particle with a shell of
particles is approximated by the interaction with a charged plane (from [323])
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net force on the test particle is therefore the repulsion from this equivalent charge
and the restoring force Ft(r) = −αr by the trap. When we assume that there are
N (r) particles inside the radius r , the force balance requires

[N (r) − 1]q2
d

4πε0r2
= αr . (10.71)

Hence [N (r) − 1] ∝ r3. On the other hand, when N is large, we can represent the
discrete particle distribution by a continuous density distribution n(r) and obtain

N (r) ≈ 4π
∫ r

0
n(r1)r

2
1 dr1 . (10.72)

Hence, dN (r)/dr = 4πn(r)r2 ∝ r2 can only be fulfilled for a constant density

n(r) = 3αε0

q2
d

=: nC . (10.73)

Therefore, a Coulomb ball in a parabolic trap is necessarily homogeneous.
For shielded interaction, these principles do not hold any longer. Consider a point

charge qd at a distance z − z0 from a homogeneously charged (infinitely large) plane
sheet of thickness dz that contains a charge density n(z0)qd [see Fig. 10.35c]. The
test charge interacts with each volume element in this sheet by the shielded force
(10.64), and the resulting repulsive force becomes

dFz(z) = n(z0)
q2

d

2ε0
exp

(
− z − z0

λs

)
dz . (10.74)

This force now depends on the distance from the plane whereas the force would be
constant for Coulomb interaction. This simple model can be used to approximate
the interaction between a point charge and a spherical shell as long as r 
 λ.

A more quantitative description can be obtained for large Yukawa balls that have
R/λ 
 1. The force equilibrium for a test particle of charge qd inside a Yukawa ball
is defined by the balance of a net force from a gradient in the density n(r) with the
confining force Ft from the trap. For simplicity of calculation, we assume that the
test particle is located between an inner and outer half space with a plane interface
and a stratified set of density layers parallel to the interface, which have a density
distribution n(r1) = n(r)+ (r1 −r)n′(r). Then, the force from the inner (outer) half
space becomes

F< = q2
d

2ε0
[λsn(r) − λ2

s n′(r)]

F> = − q2
d

2ε0
[λsn(r) + λ2

s n′(r)] , (10.75)
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which defines the force balance F< + F> = −(q2
d/ε0)λ

2
s n′(r) = αr . Hence, for a

parabolic confinement, the curvature of the density profile must be a constant,

n′′ = − αε0

q2
dλ

2
s

= − nC

3λ2
s
. (10.76)

The same result is obtained for a spherical geometry and for arbitrary R/λs [319].
The density profile therefore has the shape of an inverted parabola,

n(r) = n(0) − 1

2

nC

3λ2
s

r2 . (10.77)

The central density n(0), however, still has to be determined.
The force balance at the surface of the Yukawa ball is determined by the force

balance of the particles in the inner half space with the trap, F< + Ft = 0, which
yields

λsn(R) − λ2
s n′(R) = 2

3
nC R (10.78)

and, using n′(R) = −(1/3)nC(R/λ2
s ), we obtain

n(R) = 1

3
nC

R

λs
. (10.79)

Therefore, besides the radial decay of the density, a Yukawa ball also has a finite
value of the particle density n(R) at the surface. Finally, the density in the center of
the Yukawa ball is obtained as

n(0) = nC

3

[
R

λs
+ 1

2

(
R

λs

)2
]

, (10.80)

which gives the asymptotic form of the model in [319]. Note that the density at the
surface scales ∝ R/λs, but the central density increases more rapidly ∝ (R/λs)

2.
Hence, the larger a Yukawa ball becomes, by adding more and more particles, the
sharper peaked is the density profile in the center.

The total number of particles in a large Yukawa ball is given by

N ≈ 4π

6

∫ R

0
nC

R2 − r2

λ2
s

r2dr =
(

4π

3
R3nC

)
︸ ︷︷ ︸

NC

1

15

(
R

λs

)2

. (10.81)
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The corresponding number NC of particles in a Coulomb ball is the marked expres-
sion in the parentheses. This leads to the useful relation between Coulomb and
Yukawa balls with the same number of particles,

R

λs
≈ 151/5

(
RC

λs

)3/5

. (10.82)

The size of a Yukawa ball grows more slowly than a Coulomb ball for the same
number of particles.

The steepening of the profile shape can be seen in Fig. 10.36a. There, the profile
function from [319] is used with the asymptotic form R/λs ≈ 151/5(RC/λs)

3/5

and rescaled to an abscissa r/RC. The shielding factor is here given as RC/λs =
(N/2)1/3d0/λs, d0 being the equilibrium distance in the parabolic trap of two par-
ticles interacting by a Coulomb force given in (10.68). For d0/λs = 1, the curves
represent N = 2000, 16000, and 27000 particles.

This continuum model, however, cannot predict the arrangement of the particles
on individual shells, which is a result of strong coupling that emphasizes the nearest-
neighbor interaction [325, 318].

The increase of the central density in a Yukawa ball by adding more and more
particles to the system was studied experimentally and by computer simulation
[324]. The comparison is shown in Fig. 10.36b. Here, the number of particles in
the outermost shell becomes smaller than the prediction for a Coulomb ball (dashed
line) whereas, in the innermost shell, the population is larger than that of a Coulomb
ball (solid line). The population densities agree fairly well with simulations for
d0/λs = 0.6.
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Fig. 10.36 (a) Density profiles of Yukawa balls for different values of RC/λs. (b) Measured shell
populations Ns as a function of the total number N in comparison with the prediction for Coulomb
balls (dashed line) and Yukawa balls for d0/λs = 0.6 (solid line) (from [322, 324])
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10.4 Waves in Dusty Plasmas

Wave processes in which the motion of the dust particles can be observed with video
cameras, are interesting phenomena that reveal the wave dynamics with a resolution
at the level of kinetic description. Such wave experiments have turned out to be
highly reproducible. In the following, we will discuss three characteristic scenarios,
which explore typical features of dusty plasmas:

• Laser excited waves in linear chains and monolayers,
• The spectral energy density of a wave from Brownian motion,
• Self-excited density waves.

A weakly-coupled dusty plasma has two kinds of natural waves, the dust-acoustic
mode and the dust ion-acoustic mode. In the dust-acoustic wave (DAW), the dust
particles move in the wave field while electrons and ions are screening the dust
particles. In laboratory plasmas, this wave has typical frequencies between 10
and 100 Hz. In the dust ion-acoustic wave (DIAW), which has typical frequencies
between 50 and 500 kHz, the dust is practically immobile and the negative charge
bound to the dust particles modifies the ordinary ion-acoustic mode by having
ni �= ne. This special case was already discussed in Sect. 6.5.3. The reduction in
free electron density leads to an increase of the phase velocity. This effect could be
attributed to the reduced shielding by electrons.

In the following a detailed discussion of lattice waves in strongly coupled sys-
tems is given. These wave types are less familiar to plasma physicists.

10.4.1 Compressional and Shear Waves in Monolayers

Strongly-coupled dusty plasmas behave like solid matter, which—different from
fluids—can support two different kind of waves, compressional waves and shear
waves. In seismology, the compressional wave is known as primary, or P-wave, the
(slower) shear wave as secondary, or S-wave. In a compressional wave, the motion
of the dust particles and the wave electric field are aligned with the wave vector. This
wave is strictly electrostatic, because E||k. The shear wave can also be described by
an electrostatic model because the wave magnetic field is small for vϕ � c.

Figure 10.37 shows the deformation of a crystal under the action of a longitudinal
and transverse wave. In the longitudinal wave, the velocity field is irrotational, i.e.,
∇ × v = 0, but the volume of a cell is not constant. Contrariwise, in the shear wave,
the curl of the velocity field is non-zero but the volume is preserved, which can be
expressed as incompressibility condition, ∇ · v = 0.

10.4.1.1 Compressional Waves on a Linear Chain

Let us start with analyzing the dispersion properties of compressional waves in terms
of the interparticle forces. The simplest model for understanding the principles of
lattice waves is the linear chain of particles shown in Fig. 10.38. The equilibrium



10.4 Waves in Dusty Plasmas 305

Fig. 10.37 (a) Compressional
or P-wave. (b) Shear or
S-wave. The arrows labeled v

give the local particle
oscillation velocity v

k k

v

v
v(a) (b)

Fig. 10.38 One-dimensional
model for a compressional
wave on a linear chain of dust
particles. The open circles
give the equilibrium positions
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ξ i–1 ξ i ξ i+1
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x

positions of the particles are xi = i Δ + x0, where Δ is the interparticle distance,
and the displacements from the equilibrium position are designated by ξi . The par-
ticles interact by a repulsive Yukawa force FY(ri j ) (10.64). We further simplify the
analysis by taking only the interaction of a particle i with its neighbors i − 1 and
i + 1 into account.

This system of mutually repulsive particles can be identified as an arrangement of
masses and springs. By expanding the Yukawa force about the equilibrium position

FY(Δ + ξ) ≈ FY(Δ) − Dξ (10.83)

we find Hooke’s law, namely that the restoring force is proportional to the elongation
ξ of the spring. D can be identified as a spring constant. The minus sign is typical for
a preloaded spring, where the force becomes weaker when the spring is expanding.
Adding the force contributions from the left and right neighbor, the equation of
motion for particle i reads

mdξ̈ = D(ξi+1 − 2ξi + ξi−1) . (10.84)

Further, we have neglected damping of the particle motion by dust-neutral colli-
sions. We search for longitudinal waves of the type ξ(x) = ξ̂ exp[i(kx − ωt)].
Inserting this expression into (10.84), we obtain the characteristic equation

− ω2md = D
(

eikΔ − 2 + e−ikΔ
)

= 2D[cos(kΔ) − 1] = −4D sin2
(

kΔ

2

)
. (10.85)
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This dispersion relation describes the dispersion of phonons on the linear chain

ω(k) = 2

(
D

md

)1/2

sin

(
kΔ

2

)
(10.86)

as shown in Fig. 10.39. The frequency of the wave is normalized by its maximum
value 2(D/md)

1/2. For long wavelengths, λ = 2π/k 
 Δ, the dispersion is acous-
tic, ω = kcs with cs = (D/md)

1/2Δ. There is a shortest wavelength λmin = 2Δ,
which the linear chain can support. This limitation occurs because of Shannon’s
sampling theorem, which states that a sine wave can only be reconstructed when
there are at least two samples per period.

Up to this point, we have not yet specified the interaction law between the par-
ticles. Hence, the phonon dispersion (10.86) is still universal. For our system of
particles interacting by the Yukawa force (10.64), we obtain

D = F ′
Y|Δ = q2

d

4πε0Δ3

(
2 + 2κ + κ2

)
e−κ (10.87)

with κ = Δ/λs. In other words, the spring constant is given by the second derivative
of the interaction potential at the equilibrium distance, D = −W ′′

Y|Δ. This gives the
dispersion relation as

ω =
(

2

π

)1/2

ωd0

(
1 + κ + 1

2
κ2

)1/2

e−κ/2 sin

(
kΔ

2

)
, (10.88)

where we have introduced the dust plasma frequency for strongly coupled systems

ωd0 = qd

(ε0Δ3md)1/2
(10.89)

because of its similarity to the electron plasma frequency (2.32) when we identify
Δ−3 as the particle density.

Fig. 10.39 Phonon dispersion
on the linear chain. The
maximum allowed value of
the wavenumber is kΔ = π .
For small wavenumber (long
wavelength), the dispersion is
acoustic (dashed line)
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For comparison with experiments, we must extend this simple model by two
aspects, frictional damping of the dust particle motion by dust-neutral collisions
and force contributions from particles at positions i ± 2, i ± 3. . . on the linear
chain (see problem 10.6). When the wave is excited by a periodic force acting
on the particles, frictional damping will make the wavenumber complex, k =
kR + ikI. The real part describes the wave propagation and the imaginary part the
damping.

Waves on a linear chain were studied in [326]. The radiation pressure of a
chopped diode laser was applied to exert a periodic force on the first particle in
a linear chain. The particles were confined in an oblong potential well formed by
barriers on the powered electrode of a rf-discharge, see Fig. 10.40a.

(a)

(e)(c)

(b)

(d)

dust

barrier

CCD-
camera

kr

ki

tim
e

laser

Fig. 10.40 Laser-excited phonon on linear chain. (a) Experimental set-up. (b) Response of parti-
cles on chopped laser radiation pressure (inverted image). (c) Phase, (d) amplitude response of the
linear chain. (e) Best fit to dispersion and damping by varying κ (from [326])
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The on phase of the laser is visible by the enhanced light scattering from the
right-most particle. The response of the particles in the linear chain, Fig. 10.40b,
is sinusoidal with a phase shift between the individual particles and a decreasing
amplitude, see Fig. 10.40c,d. The real and imaginary part of the wave number k
are well described by the model (10.87). The dust charge qd = −(14000 ± 4000)e
was determined independently by the resonance method (Sect. 10.2.1.2) and the gas
friction from Epstein’s formula (10.41) for diffuse reflection. Then, the shielding
factor κ is the only unknown in the wave dispersion. From the best fit shown in
Fig. 10.40e, κ = (1.6 ± 0.6) was obtained.

10.4.1.2 Plane Compressional and Shear Waves in Monolayers

In a two-dimensional monolayer, both longitudinal and transverse modes exist. The
dispersion relation for the longitudinal (L) and transverse mode (T) in a mono-
layer with hexagonal structure and a Yukawa interaction force was first analyzed
in [327] and, including collisions, in [328, 329]. For arbitrary propagation direction,
as sketched in Fig. 10.41, it is a complicated expression, which we will not discuss
further.

For propagation along one of the principal directions (here the x direction) it
takes the simpler form

ΩL(ΩL + iΞd) = 1

π

∑
X>0,Y

F(X,Y ) sin2
(

K X

2

)
(10.90)

ΩT(ΩT + iΞd) = 1

π

∑
X>0,Y

F(Y, X) sin2
(

K X

2

)
. (10.91)

The coordinates X = x/Δ and Y = y/Δ as well as the wave vector K = kΔ
are made dimensionless. R2 = X2 + Y 2. The shielding factor is κ = Δ/λs. The
normalized wave frequency is Ω = ω/ωd0 and the normalized collision frequency
Ξd = νd/ωd0 with ωd0 given by (10.89). The summation is over all grid points

Fig. 10.41 Plane wave fronts
in a monolayer of particles
with hexagonal structure

k

x

y

Δ
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(X,Y ) of the lattice with X > 0. Note that sin2(K X/2) terms indicate that particle
pairs at ±X have already been introduced, which yields the restriction X > 0.
The function F(X,Y ) is the (normalized) spring constant for the interaction with a
neighboring particle at relative position (X,Y ),

F(X,Y ) = R−5e−κR
[

X2
(

3 + 3κR + κ2 R2
)

− R2 (1 + κR)
]

. (10.92)

The resulting dispersion relations for the compressional and shear wave are
shown in Fig. 10.42 for the directions 0◦ and 90◦. The compressional wave has
a similar shape as the result for the linear chain in Fig. 10.39. For small k-values,
the dispersion is acoustic with a slope ω/k = CL, the sound speed of the longitudi-
nal wave. For greater k, the compressional wave becomes dispersive and the group
velocity dω/dk vanishes near kΔ = π . For large k, the dispersion also depends
on the propagation direction in the crystal whereas, for small k, the dispersion is
independent of propagation angle. This is due to reaching the continuum limit where
the exact position of the particles becomes unimportant and only the area density of
dust particles determines the sound speed.

The shear wave shows acoustic behavior over a wider range of k-values. The
dispersion in the 0◦ direction becomes superlinear, i.e., bending upwards. The trans-
verse wave has a smaller sound speed CT than the longitudinal wave CL . This is a
general observation in solid matter and is the reason for the terminology in seis-
mology of primary for the longitudinal wave, and secondary for the later arriving
transverse wave.

From (10.90) to (10.91) one can see that the normalized frequencies ΩL,T are
independent of the dust charge qd, which only appears in the frequency ωd0 that
is used for normalization. Peeters et al. [327] had noticed that the sound speeds
CL,T = limk→0 ωL,T/k depend in a different manner on the shielding factor κ . In
particular, the ratio of the sound velocities depends only on κ because ωd0 cancels in

Fig. 10.42 Dispersion of
compressional (solid lines)
and shear wave (dashed lines)
in a monolayer with
hexagonal order for wave
propagation in 0◦ and 90◦
direction. Dust-neutral
collisions are neglected
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Fig. 10.43 Ratio of sound
velocities CL/CT vs.
shielding factor κ
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the ratio. Therefore, the ratio CL/CT shown in Fig. 10.43 can be used as a diagnostic
method for determining κ [330], as will be discussed below in paragraph 10.4.1.5.

10.4.1.3 Experiments with Plane Compressional Waves

Plane compressional waves were studied in [328] to determine the shielding fac-
tor κ . The experiments, shown in Fig. 10.44a, used a monolayer of dust particles
trapped in the sheath of a rf discharge at 13.65 MHz and 27 Pa argon pressure.
Lateral confinement is provided by a rectangular barrier. The interparticle distance
was 740 μm. The first row of particles is periodically pushed by the radiation pres-
sure from an argon-ion laser that is expanded into a line and is modulated by a
mechanical chopper.

The wave dispersion and damping are shown as experimental points in
Fig. 10.44b,c in comparison with theoretical curves for various values of κ . The
dust charge, qd = 14500 e, was determined independently by the resonance method

CCD-camera

grid electrode

powered electrode

argon ion laser

cylindrical
lens

dust particles

barrier

(a)

(b)

(c)

Fig. 10.44 (a) Excitation of compressional waves by applying a periodic laser force. (b) Real part
and (c) imaginary part of the wave number. The best fit yields κ = 1 ± 0.5 (from [328])
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(Sect. 10.2.1.2) and defines the frequency ωd0. For these experimental conditions,
the best fit to the experimental data yields κ = 1 ± 0.5.

10.4.1.4 Excitation of Plane Shear Waves

Laser-excited shear waves were first demonstrated in the arrangement of Fig. 10.45a
[331]. A laser spot hits the monolayer under a small angle and exerts a force in
x-direction. Rapidly (200 Hz) moving the laser spot back and forth in x-direction,
by means of a scanning mirror, all particles in a line are displaced. A mechanical
chopper is used to generate short pulses of applied shear force. In Fig. 10.45b a
so-called velocity map is shown, in which the arrows represent the instantaneous
velocity field. The particle velocities were obtained from the change of the particle
positions in subsequent video frames. After the end of the pulsed shear force, the
perturbation splits in two waves, which propagate in ±y direction. Averaging all
velocities over the x-direction, see Fig. 10.45c, it becomes evident that a shear wave
is formed which propagates at constant speed CT.

10.4.1.5 Diagnostic Application of Compressional and Shear Waves

The method of determining the dust charge and the shielding factor from the mea-
sured sound speeds CL and CT was introduced in [330]. The value of κ is determined

(a)

(b)

(c)

Fig. 10.45 (a) Excitation of shear waves by applying a shear pulse with a laser. (b) Propagation
of the shear pulse perpendicular to the applied shear. (c) The shear pulse propagates at a constant
sound velocity. (Reprinted with permission from [331]. c©2000 by the American Physical Society)
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Fig. 10.46 Determination of
dust charge number Zd (open
squares) and shielding factor
κ (circles) for different
interparticle distances Δ from
the ratio of sound velocities
CL/CT (from [330])
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from CL/CT (Fig. 10.43). For determining qd, we need the measured sound speed
CL and the interparticle distance Δ. In the limit K � 1 we easily obtain from
(10.90)

CL = lim
k→0

ω

k
= Ω

K
ωd0Δ =

⎛
⎝ 1

π

∑
X,Y

F(X,Y )
X2

4

⎞
⎠

1/2

ωd0Δ , (10.93)

which can be solved for qd using ωd0Δ = qd(ε0Δmd)
−1/2. Note that in (10.92), the

sum in parentheses depends only on the hexagonal geometry and on the value of κ

that we have determined in the first step.
Figure 10.46 shows the results obtained by the sound speed ratio method [330].

Here, the dependence of κ and qd on the interparticle distance Δ was studied by
varying the amount of dust trapped in the monolayer. The shielding factor κ = Δ/λs
increases with Δ as expected, confirming that the shielding length λs is constant.
Also, the dust charge shows little variation.

10.4.1.6 Radiation from a Point Source

In order to understand the elastic waves in a monolayer from a more fundamental
standpoint, we shortly digress from the case of plane waves. Rather, the waves are
excited by a localized and short-duration pulse of elastic deformation. This can be
done in the arrangement of Fig. 10.47a, where a laser spot hits a small area of the
monolayer. In this way, a distortion is generated that comprises a local shear as well
as a pair of small compression-rarefaction zones in x-direction. After the end of the
short pulse, this deformed region radiates elastic waves.

The particle velocities are extracted from pairs of subsequent frames and mapped
to a fixed grid. Repeating the experiment 100 times, averaged velocity maps are
obtained like the one shown in Fig. 10.47b. It shows the evolution of the elastic
deformation and should not be confused with any hydrodynamic flow of the dust
particles. On average, the particles remain at their lattice sites. The velocity map
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Fig. 10.47 Radiation from a short localized elastic dipole deformation. (a) Experimental arrange-
ment. (b) Velocity field v(x, y) at t = 5. (c) Splitting and propagation of the shear component
∇ × v. (d) Propagation of the density pertubation ∇ · v (from [332])

shows a large double vortex, which expands in x-direction at the speed of a com-
pressional wave and in y-direction at the speed of the shear wave.

From such velocity maps, we can extract the shear motion by taking the curl of
the velocity field, ∇ × v, shown in Fig. 10.47c. The graph is composed of narrow
stripes around the double vortex, which appears as a pair of black and white dot. The
numbers below the stripes are the frame number in the video, which was recorded
at 30 fps. One observes that each of the vortices splits into a pair (compare with the
splitting of the initial shear pulse in Fig. 10.45c), which subsequently propagate in
±y direction at the sound speed CT.

The compressional wave is visualized by the divergence of the velocity field,
noting that from the continuity equation (5.8) we have ∇ · v = −(1/n)dn/dt .
The compression (rarefaction) zone appears dark (bright). Again, these perturba-
tions split into pairs that propagate in ±x direction at the higher sound speed of the
compressional wave.

10.4.1.7 Mach Cones

A perturbation in an elastic medium moving at supersonic velocity, v > cs, gener-
ates a Mach cone. The Mach cone is the envelope of the elementary waves excited
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Fig. 10.48 The wave fronts
from a sound source moving
at speed v launched at times
tn = nτ form a Mach cone of
half angle μ = arcsin(cs/v)

µ

vT
Tcs

at each point of the trajectory of the perturbation, as shown in Fig. 10.48 for sound
pulses launched at fixed intervals. The half angle μ of this Mach cone is given by
the Mach relation

sinμ = cs

v
. (10.94)

Therefore, measuring the Mach cone angle for a given velocity of the pertubation
yields the sound speed in that medium.

Mach cones in dust monolayers were discovered in [333] when additional out-
of-plane particles moving at supersonic speed created elastic deformations in the
monolayer. This original observation was later developed into a diagnostic method
by using well-defined perturbations exerted by a moving laser spot [334]. Here
we discuss shortly experiments with Mach cones that simultaneously excite com-
pressional and shear waves [335]. The experimental arrangement is the same as in
Fig. 10.47a except for using a moving laser footprint instead of applying a short
pulse.

The velocity map in Fig. 10.49a shows that there are two distinct Mach cones
of different half angle. In the wider cone, the particle vibration is mostly across
the cone, which gives a hint at the compressive waves that establish this cone. In
the narrower cone, the particle velocities are aligned with the cone indicating the
shear waves. This topology is summarized in the cartoon in the right half of the
Figure.

Again, the compressional and shear waves can be separated by calculating
the density fluctuations ∂n/∂t and the curl of the velocity field, as shown in
Fig. 10.49b,c. The internal structure of the compressional cone, which forms a set
of nested lateral wakes, is a feature that results from interference effects between
different wavelets on the dispersion branch which have different wavelength and
propagation velocity [336]. The wake behind a ship has a similar structure. The
Mach relation for compressional and shear Mach cones is shown in Fig. 10.49d for
various speeds of the laser spot. The resulting sound speeds are CL = 23.0 mm s−1

and CT = 5.7 mm s−1.
Mach cones, which may be excited by boulders on Keplerian orbits, were sug-

gested as a possible diagnostic method for the dusty plasma in the ring system of
Saturn [337, 338].
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Fig. 10.49 (a) Velocity map of the compressional and shear Mach cones in a monolayer excited
by a moving laser spot. (b) Shear Mach cone, ∇ × v. (c) Compressional Mach cone, ∂n/∂t , with
wake structure. (d) Mach relation (from [335])

10.4.2 Spectral Energy Density of Waves

The Brownian motion of the dust particles about their equilibrium position in the
crystal lattice can be considered as a superposition of thermally excited sound
waves. The reconstruction of particle positions with sub-pixel resolution [339]
enables the experimenter to investigate these small-amplitude vibrations. The wave
spectrum is reconstructed from the Fourier transform (in space and time) of the
particle velocities v(r, t),

v(k, ω) = 2

T L

T∫
0

L∫
0

v(r, t)e−i(k·r−ωt)dr dt . (10.95)

The spectral power density

S(k, ω) = 1

2
md|v(k, ω)|2 (10.96)

characterizes the energy distribution over the various modes. Such wave energy
spectra [340] are shown in Fig. 10.50.
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Fig. 10.50 Spectral energy
density S(ω, k) of particle
vibrations in Brownian
motion for wave propagation
in the 0◦ direction.
Dispersion curves for the
longitudinal and transverse
modes (white dashed lines)
are superimposed, which give
the best fit to laser-excited
compressional and shear
waves. (Reprinted with
permission from [340],
c©2002 by the American

Physical Society)

kΔ/π

The wave energy is concentrated near the dispersion branches of the compres-
sional and shear modes. The wave number range hear extends up to ±2π/Δ. Note
that the limitation λ < 2Δ from the Shannon sampling theorem no longer exists,
because there are additional particles between the wave fronts that sample the wave,
as shown in Fig. 10.41. The white, dashed curves are theoretical dispersion curves,
which give the best fit to small amplitude waves launched by the laser method. The
natural phonon spectra are in close agreement with theory.

10.4.3 Dust Density Waves

Historically, the dust acoustic wave (DAW) [341, 342] was the first observation of a
collective phenomenon in a dusty plasma that involved the dynamics of dust parti-
cles. The DAW is a close relative of the ion-acoustic waves discussed in Sect. 6.5.3.
There, we had learned that the wave dynamics is determined by the ion inertia and
the shielding by electrons. This led to the ion sound speed Cs = ωpiλDe. The DAW
involves dust inertia and shielding by electrons and ions. Therefore, the frequencies
of DAWs are much lower and are typically found in the range (10–100) Hz.

There is an overwhelming literature on DAWs and the interested reader should
refer to reviews [226, 227, 232, 236] or specialized textbooks [238, 239]. At our
introductory level, we will here only discuss the linear dispersion properties of the
DAW.

We can construct the dielectric function for the dust plasma system in analogy to
the ion-acoustic wave (6.75), where the susceptibilities of ions and electrons were
given by

χi = − ω2
pi

ω2 − k2γikBTi/mi
, χe = + 1

k2λ2
De

. (10.97)
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Now, for the DAW, the role of the ions is taken over by the dust, and both electrons
and ions contribute to shielding of the dust grains. We describe the dust by a cold-
fluid model (Td = 0) with a dust plasma frequency

ωpd =
(

ndq2
d

ε0md

)1/2

. (10.98)

Adopting such a fluid description further implies that the dust system must be in
a weakly coupled state with a coupling factor Γ � 1. This becomes evident from
the fact that the only information about the dust particle positions is given by their
number density nd0. There are no conditions imposed for the mutual arrangement of
dust particles, e.g., correlations between particles, which are typical of a fluid phase,
or any lattice structure in the solid phase. In this spirit, we can immediately write
down the susceptibilities as

χd = −ω2
pd

ω2
; χi = 1

k2λ2
Di

; χe = 1

k2λ2
De

. (10.99)

Then the dispersion relation is given by the zeroes of the dielectric function

0 = ε(k, ω) = 1 + χd + χi + χe , (10.100)

and the dispersion relation takes the explicit form

ω2 = k2
ω2

pdλ
2
D

1 + k2λ2
D

, (10.101)

which is displayed in Fig. 10.51.
In the long-wavelength limit, kλD � 1 the DAW has an acoustic dispersion,

ω = k CDAW, with the dust-acoustic wave speed

CDAW = ωpdλD =
⎡
⎣ Z2

dnd0/ni0

1 +
(

ne0Ti
ni0Te

)
(

kBTi

md

)⎤
⎦

1/2

≈ Zd

(
nd0

ni0

kBTi

md

)1/2

. (10.102)

The simplification in the last step is valid for Te 
 Ti as found in many dc or rf
discharges. At short wavelength, kλD > 1, the wave frequency approaches the dust
plasma frequency.

The first observation of DAWs was made in a Q-machine, where a secondary
“firerod” plasma was produced by means of a positively biased (+200 V) small
disk electrode, in which a dust cloud is trapped [342]. DAWs of typically 12 Hz
frequency and 9 cm/s propagation speed were spontaneously excited by the ion flow
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Fig. 10.51 Dispersion of the
DAW for Td = 0. The dashed
lines indicate the asymptotic
behavior

in the secondary plasma. The dispersion relation of the DAW was investigated in a
similar arrangement with a small disk anode in a glow discharge [343].

The situation of a dust cloud trapped in an anodic plasma is sketched in
Fig. 10.52a. The dust particles are confined by a combination of ion drag force
and electric field force [344]. A snapshot of the DAW is shown in Fig. 10.52b.
The frequency of the spontaneously excited DAWs was varied by modulating the
anode bias voltage in a frequency range of (6–30) Hz, to which the waves become
entrained. The resulting dispersion relation [Fig. 10.52c] shows the acoustic disper-
sion ω/k = CDAW expected for the long-wavelength limit.

Spontaneously excited DAWs were found in many plasma situations, e.g., in the
positive column of a gas discharge [345], in rf-parallel plate discharges [346, 347],

U
+ U

dc

ac

(a) (c)

(b)

anodic plasma

dust cloud

Fig. 10.52 (a) Sketch of the experimental arrangement for DAWs with a dust cloud trapped in
an anodic plasma. (b) Scattered light from the dust cloud. The bright regions have the highest
dust density. The arrow indicates the wave propagation direction. (c) Wave dispersion observed.
(Reprinted with permission from [343]. c©1997, American Institute of Physics)
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in fireballs [348] or in magnetized anodic plasmas [344, 349, 350]. When the dust
density is estimated from a snapshot that resolves the indivual positions of dust
grains, and the ion Debye length is known from the plasma parameters, the dust
acoustic speed CDAW can be used as a diagnostic method for the determining the
dust charge qd.

10.4.4 Concluding Remarks

The distinguishing features, by which dusty plasmas introduce new physics into the
realm of plasma phenomena, can be summarized as follows:

• Charge variability is a feature that is unknown in classical plasmas. It leads
to intrinsic delays, which can trigger instabilities, or imposes the constraint of
charge sharing in dense dust clouds.

• Plasma crystallization opens the field of “model solids” for studying crystals with
unusual interaction forces of long range (Coulomb) or short range (Yukawa) with
respect to their thermodynamic properties (phase transitions) or dynamic proper-
ties (phonons).

• Orbital motion of ions in the electric field of highly charged dust particles plays
an important role in dusty plasmas and determines charge collection currents or
ion drag forces. As a principal feature of dust-ion interaction, it is of similar
importance as the gyroorbits in classical magnetized plasmas.

The Basics in a Nutshell

• Dust charging is determined by charge collection (electrons and ions) and
electron emission (photoeffect, secondary emission).

• Orbital motion of ions on open trajectories about negative dust particles
determines the charge collection and the ion drag force.

• The floating potential Φf of a dust particle depends on the electron temper-
ature and the ion mass. The dust charge can be described by the capacitance
model as qd = 4πε0aΦf. It depends on the particle radius a and the floating
potential.

• Different from the fixed electron and ion charge, the dust charge is a
dynamic variable. This leads to charge fluctuations by the discreteness of
the absorbed or emitted charges. In dynamic processes, the dust charging
process is delayed by a time constant τ = RC .

• Dust particles are subject to the electric force qd E , the gravitational force
mdg, drag forces from neutral or ion winds, thermophoretic forces and radi-
ation pressure.

• In laboratory plasmas, dust sediments to the sheath region and forms flat
pancake-like clouds. Three-dimensional dust arrangements require micro-
gravity or levitation by thermophoretic forces.
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• The coupling factor Γ = q2
d (4πε0aWSkBTd)

−1 determines the thermody-
namic phase of a dust cloud.

• Plasma crystals are formed for Γ > 200. Depending on the geometry of the
electrostatic trap that confines a plasma crystal, there are two-dimensional
monolayers with hexagonal order, multilayer crystals with fcc, bcc and hcp
order, or spherical dust clouds with shell structure.

• Crystalline states of dust clouds support two types of phonons: compres-
sional and shear. In two dimensions, many details of elastic waves could be
studied by applying laser forces: dispersion of plane waves, radiation from
point sources, or Mach cones. These techniques can be used as diagnostic
methods for determining qd and κ .

Problems

10.1 Consider the lunar-dust fountain effect, in which a dust particle originally
sticks to the dust layer covering the surface. Assume that the surface has a potential
of Φ = +4 V and the dust grain of 10 nm radius has initially the same potential.
The surface potential is shielded within λD ≈ 1 m. What is the maximum height this
dust particle can reach after its bond with the surface is broken? (ρd ≈ 3000 kg m−3,
gL = 1.6 m s−2)

10.2 Discuss the charge reduction for the case of an isothermal argon plasma with
Boltzmann ions and Te/Ti = 100. Use (10.26) in the limit P → ∞, where ηf = ηc.
Show that in this limit ηf = 0.078. What is the normalized ion density ni/n∞ in this
limit? What does the result mean for the behavior of ions?

10.3 A dust particle of a = 5 μm radius is embedded in a typical laboratory plasma
in argon gas with Te = 3 eV, Ti = 0.03 eV and n = 1015 m−3. What is the collec-
tion radius bc and Coulomb radius rC of this particle for an ion at Bohm velocity?
Compare the result with the electron Debye length. What does this mean for the role
of collection force and orbit force?

10.4 Perform the missing steps leading to (10.54).

10.5 Two particles in a parabolic potential well, which interact by a pure Coulomb
force, find their equilibrium positions at r = ±d/2. Allow for small-amplitude
vibrations about this equilibrium. Show that the frequency of this breathing mode is
given by (10.69).

10.6 Start from the equation of motion for particles in a linear chain and consider
interactions of particle i with all other particles. Show that the dispersion relation
for longitudinal modes is given by



Problems 321

ω2 = 2

π
ω2

d0

∞∑
n=1

1

n3

(
1 + nκ + n2

2
κ2

)
e−nκ sin2

(
nkΔ

2

)
.

10.7 A linear chain of particles (mass m) has an equilibrium spacing Δ and the
repulsive force between neighboring particles at the equilibrium position is FΔ. The
individual masses at location xi are displaced in transverse direction by ηi � Δ.
Discuss, why the repulsive force can be considered as constant in this analysis.
Analyse the equation of motion, in analogy to longitudinal modes, in the nearest-
neighbor-approximation and show that the wave frequencies for all wavenumbers k
are imaginary. Discuss this type of instability and explain why the zig-zag pattern at
k = π/Δ has the highest growth rate.

10.8 What are the differences in the interaction forces between a one-dimensional
system of charge sheets as discussed in Sect. 9.4.1 and the linear chain model dis-
cussed in Sect. 10.4.1.1?



Chapter 11
Plasma Generation

The clip, the clop! All cla. Glass crash. The
(klikkaklakkaklaskaklopatzklatschabattacreppycrotty-
graddaghsemmihsammihnouithappladdyappladdypkonpkot!).

James Joyce, Finnegans Wake

Lightnings and technical plasmas are generated by an electric breakdown in a gas.
The ignition process leads to a subsequent current flow that generates an electrical
discharge. Depending on the power source that feeds the plasma, we distinguish
direct current (dc), low-frequency alternating current (ac), and radio-frequency (rf)
discharges. This chapter gives a brief introduction into the most common types of
discharges and the associated plasma processes with emphasis on the how-questions
rather than giving answers to all why-questions.

11.1 DC-Discharges

This Section is focused on low-pressure dc discharges with cold cathodes or therm-
ionic emitters. First a word of caution: The following description of the discharge
types is not a lab manual. Rather, operating dc discharges in the lab requires observ-
ing the established lab safety standards. These include proper grounding as well as
protective insulation to prevent touching any parts that carry voltages in excess of
60 V that may be lethal.

11.1.1 Types of Low Pressure Discharges

The different types of low-pressure dc discharges are compiled in Fig. 11.1 as a
function of the discharge current. Assume that a dc voltage is applied to an elec-
trode system consisting of parallel plates of a few square-centimeters area and a few
centimeters distance, see Fig. 11.1a. The gap is filled with a gas at low pressure
(say, p = 400 Pa or 3 torr). To limit the discharge current, a resistor is connected
in series, which is initially set at a large value of 1 M�. The voltage U0 of the
power supply is chosen just high enough that electric breakdown occurs. This may
happen at U0 ≈ 600 V in this example. At discharge currents of up to 1 μA the
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Fig. 11.1 The self-sustaining discharge. (a) A gas discharge between parallel plates is operated
with a current-limiting resistor R in series and a discharge voltage U develops across the discharge
gap. (b) By gradually reducing the resistance, four distinct discharge modes are established. Note
that the arc discharge has a negative differential resistance

discharge voltage U is independent of the flowing current and remains close to the
breakdown voltage. There is no luminosity in the discharge gap. This regime is
called the Townsend dark discharge, named after John S. Townsend (1868–1957).

When the series resistor is lowered, the discharge current increases and a sub-
normal glow develops that covers only part of the cathode surface. This discharge
mode has a lower discharge voltage that is nearly constant over a current regime of
I ≈ (0.1–10)mA, as shown in Fig. 11.1b, until the cathode is completely covered
with the glow. This endpoint is the normal glow discharge. The discharge now shows
various luminous regions which fill the gap. The discharge voltage rises again for
even higher discharge currents, forming an anomalous glow discharge. Raising the
discharge current further, this discharge type becomes unstable (dashed part of the
curve) and a different discharge, the arc discharge is formed with discharge currents
of 1 A and more. In the arc discharge, the discharge channel has contracted to a
small part of the surface of the negative electrode. Note that the arc discharge has
a characteristic with a negative differential resistance, i.e., the discharge voltage
decreases for higher currents.

11.1.2 Regions in a Glow Discharge

The normal glow discharge in a long glass tube is a good example to dissect a
gas discharge into its functional blocks. Various regions in the discharge can be
distinguished by their brightness or darkness, as shown in Fig. 11.2a. The negative
(positive) electrode of a glow discharge is called cathode (anode). When the glow
discharge is operated with a plane cathode, a complex pattern of dark spaces and
luminous layers becomes visible on the cathode side, as sketched in Fig. 11.2a.
Towards the anode, an extended volume of luminosity appears, the positive column.
When the length of the discharge tube is increased while the discharge current and
gas pressure are kept constant, the cathodic features remain unchanged, but the
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Fig. 11.2 Anatomy of a glow
discharge in a long
cylindrical tube with plane
cathode (C) and anode (A).
(a) Various dark spaces and
luminous regions are
indicated. (b) Sketch of the
electric potential Φ and axial
electric field E in the normal
glow discharge
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positive column becomes longer and fills the additional volume. It is found that
when the discharge gap is made shorter, the discharge is maintained even as the
positive column and the Faraday dark space have been “consumed”, leaving only
the negative glow and the dark space adjacent to the electrodes.

This behavior shows that the glow discharge can be split into two functional
units: the cathodic part, which is responsible for liberating a sufficient number of
electrons from the cold cathode and ends in the negative glow, and the anodic part
consisting of positive column and a transition layer to the anode.

The positive column is the active part in fluorescent tubes, in which a small
admixture of mercury to a low-pressure argon discharge generates UV light that
is converted to “white” visible light in a fluorescent coating of the inner tube wall.
The typical red colour of the neon spectrum is found in neon displays.

The potential distribution in a glow discharge and the corresponding axial elec-
tric field are sketched in Fig. 11.2b. The largest voltage drop occurs in the cathode
region. The negative glow is mostly field-free, E ≈ 0. In the positive column, the
axial electric field is constant. There is a small voltage drop across the anode layer.

11.1.3 Processes in the Cathode Region

The key to understanding electrical breakdown and the steady-state of the cathode
region is the interplay of electron multiplication in the gas and release of electrons
from the cathode by ion bombardment.

11.1.3.1 Gas Breakdown

When a primary electron is released from the cathode and is accelerated in the elec-
tric field, which we assume to be homogeneous before breakdown, it can ionize gas
atoms after a typical mean free path for ionization, λi. In this ionization process
an electron-ion pair is created. Now two electrons are accelerated that generate
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Fig. 11.3 An electron
emitted from the cathode
generates a cascade of new
electron-ion pairs. An
equilibrium is reached, when
so many ions hit the cathode
that a new electron is released
with probability P = 1

+

+

+

+

+
+

+

Cathode Glow

four electrons in the next generation, and so on, creating an electron avalanche
(Fig. 11.3). The ions are accelerated towards the cathode, where they have a certain
chance to liberate a new electron that replaces the primary electron and launches the
next avalanche.

This process can be described by the following model. In a statistical sense, the
electron multiplication is described by the number dne of newly created electrons in
an interval dz

dne = α ne dz , (11.1)

which leads to exponential growth ne(x) = ne(0)eαz . Here, α = λ−1
i is the gas

multiplication factor introduced by Townsend. At the positive electrode, an electron
flux

Γe(d) = ne(d)μe E (11.2)

leaves the gap at z = d . The fact that equal amounts of electrons and ions were
produced in the avalanche process, requires that the ion flux at the cathode is given
by Γi(0) = −Γe(d) + Γe(0). Hence,

Γi(0) = −Γe(0)
(

eαd − 1
)
. (11.3)

The probability to release an electron from the cathode by ion impact is described by
a coefficient γ ,1 which is defined as the ratio of emitted electron flux to incoming
ion flux, γ = |Γe(0)/Γi(0)|. Breakdown occurs when the avalanche process can
maintain itself. This can be described by the balance equation

γ
(

eαd − 1
)

= 1 . (11.4)

Townsend used an empirical law for the dependence of α on the electric field,

α

p
= A exp

(
− B

E/p

)
(11.5)

1 In practice, this coefficient describes the sum of secondary emission by ions and metastable atoms
and the photoemission by UV radiation in the cathode fall.
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with constants A and B that are characteristic for each gas. Here, α/p represents
the electron multiplication per mean free path and E/p the energy gain of an elec-
tron per mean free path, ∝Eλmfp, which makes (11.5) independent of gas pressure.
Using Townsend’s stationarity condition (11.4), and defining the breakdown voltage
Ubd = Ebd d, we find Paschen’s law, named after Friedrich Paschen (1865–1947)

Ubd = Bpd

C + ln(pd)
with C = ln

[
A

ln(1 + 1/γ )

]
. (11.6)

The number of ionizing events in the discharge gap is proportional to the neutral
gas density and the width d of the gap. When we plot the breakdown voltage Ubd
vs. pd, a so-called Paschen curve is obtained (Fig. 11.4), which has a pronounced
minimum. Left of the minimum, there are too few atoms for ionization, right of
the minimum the energy gain per mean free path becomes insufficient to maintain
the electron energy needed for ionization. Both effects have to be compensated by
a higher electric field leading to a higher breakdown voltage. The minimum volt-
age depends on the combination of gas and cathode material. Typical experimental
values are compiled in Table 11.1 [351].

Fig. 11.4 Breakdown voltage
Ubd in air for γ = 10−2 as a
function of the product pd
(1 torr cm = 1.33 Pa m)

Table 11.1 Minimum
breakdown voltage (pd)min

Gas Cathode Vmin (V) (torr cm)

He Fe 150 2.5
Ne Fe 244 3
Ar Fe 265 1.5
Air Fe 330 0.57
Hg W 425 1.8



328 11 Plasma Generation

11.1.3.2 Steady-State Operation

Now let us consider the steady-state operation of the cathode region. In the Aston
dark space, primary electrons from the cathode have insufficient energy to excite
neutral atoms. Excitation of various levels becomes possible in the cathode layer.
In the cathode dark space, the energy of most electrons lies far beyond the maxi-
mum of the excitation function and little visible light is emitted. At the boundary
of the negative glow, there are many slow electrons from the last generation of the
avalanche process, which are again able to excite the atoms. This sequence of events
is confirmed by spectroscopic observations: In the cathode layer the spectral lines
appear in the order of increasing excitation energy; at the edge of the negative glow,
the spectral lines appear in reversed order. This is a hint that the electron velocity
decreases in this region. Historically, this was an important finding made by Ernst
Gehrcke (1878–1960) and Rudolf Seeliger (1886–1965) that eventually led to the
famous experiments of Franck and Hertz, which were fundamental for the under-
standing of the internal structure of the atom.

After ignition, the electric field near the cathode is no longer homogeneous.
Rather, the cathode dark space is predominantly filled with ions giving rise to posi-
tive space charge. It is an empirical observation that the electric field in the cathode
region varies as

E(z) = Ec

(
1 − z

dn

)
. (11.7)

Correspondingly, the electric potential takes a parabolic shape (see the sketch in
Fig. 11.2). Here, dn is the thickness of the normal cathode fall, roughly the dis-
tance between the cathode and the edge of the negative glow. The stationarity of the
electron production again results in a condition of the type

γ

⎡
⎣exp

⎛
⎝

dn∫
0

α[E(x)]dx

⎞
⎠ − 1

⎤
⎦ = γ

[
exp(ᾱdn) − 1

] = 1 , (11.8)

but now with a different electron multiplication coefficient ᾱ that is based on the
electric field profile (11.7) because the electric field determines the electron energy.
The voltage drop of the normal cathode fall, Un = − ∫

E(x)dx , turns out smaller
than the breakdown voltage Ubd. The thickness of the normal cathode fall can be
obtained from (11.8) as

dn = 1

ᾱ
ln

(
1 + 1

γ

)
. (11.9)
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11.1.4 The Hollow Cathode Effect

When the plane cathode of a glow discharge is replaced by a cylinder that is longer
than its diameter, the cathode yield can be enhanced by one or two orders of magni-
tude. A photo of a neon discharge with a hollow cathode is shown in Fig. 11.5.

The radius of the hollow cathode is chosen smaller than the thickness dn of the
normal cathode fall of a plane cathode, which again gives a scaling of the dimen-
sions of the hollow cathode with the product pd. Then, the cathode layers on oppo-
site sides of the inner surface of the hollow cathode tend to overlap and electrons
leaving the surface will be decelerated when they enter the opposite cathode layer.
Moreover, most of the UV photons, which were free to escape in the plane geometry,
are now contributing to the cathode yield. This may explain the increased efficiency
of a hollow cathode. Outside the hollow cathode, only a negative glow and the Fara-
day dark space are found.

Fig. 11.5 Neon discharge
with a hollow cylindrical
cathode

11.1.5 Thermionic Emitters

The disadvantage of glow discharges with cold cathodes are the high operating volt-
ages, lying between 300 and 3000 V, typically. When electrons are liberated by a
different means, the overall voltage drop can be kept small and the discharge can
be operated at a much lower input power. One of these processes is thermionic
emission.

The release of electrons from a hot metal (or oxide) surface is described by
Richardson’s law, named after the British physicist Owen Willans Richardson
(1879–1959),

j (T ) = ART 2 exp

(
− WR

kBT

)
. (11.10)

AR and WR (an effective work function) are empirical constants to describe the
emission characteristic of a thermionic emitter. Typical values for selected cathode
materials are compiled in Table 11.2.
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Table 11.2 Coefficients in the Richardson formula (11.10) for selected cathode materials (from
[352])

AR

Material (A cm−2 K−2) WR (eV)

W (polycrystalline) 60 4.51
W (thoriated) 3 2.63
LaB6 29 2.66
BaSrO 0.5 1.0

The typical ranges of operating temperature for polycrystalline tungsten wires,
thoriated tungsten wires, oxide coated nickel cathodes, and lanthanum hexaboride
are shown in Fig. 11.6.

Oxide cathodes are commonly used in fluorescent tubes. Their advantage is
the high electron emission at convenient low operating temperatures. For plasma
experiments, oxide cathodes are not suitable when they are repeatedly exposed to
air. Directly heated tungsten wires are convenient electron emitters in low-pressure
discharges, despite of their high operating temperature. In planning such devices,
however, the thermal emission should be taken into consideration, which accord-
ing to the Stefan-Boltzmann law rises ∝ T 4. Lower operating temperatures can be
achieved with lanthanum hexaboride, which is available as plates, rods and tubes
used for indirectly heated cathodes.

Fig. 11.6 Operating regimes
for various cathode materials

11.1.6 The Negative Glow

At the edge of the negative glow, two populations of electrons are found: thermal
electrons from the last generation of the avalanche process and energetic electrons
originating from the cathode that have gained nearly the entire energy −e�Φ of
the cathode fall. Therefore, the negative glow is produced by a non-local process.
Like a heir to a fortune that was amassed by hardworking ancestors, the negative
glow has no need to work for sustaining its glittery life. This is the reason why the
electric field (and the associated ohmic power deposition, j E) can nearly vanish in
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the negative glow. With increasing distance from the cathode, the negative glow gets
ever fainter and ends up in the Faraday dark space. Remember that this vanishing of
the luminosity can be attributed to exhausting the energy of the thermal electrons.
The primary electrons with energies of 500 eV and more will only produce some
weak ionization and will finally crash into the anode. The Faraday dark space is
terminated by the increase of the axial electric field that again leads to electron
heating and the establishment of the positive column (which in our analogy has to
care for its own living).

By shortening the distance between anode and cathode, the positive column can
be completely suppressed. Then a glow discharge is formed, which consists only of
the cathodic parts and the negative glow. Glow-covered cathodes are used in indica-
tor lights or in nixie tubes—an early type of single-digit display tube (Fig. 11.7). The
individual cathodes have the shape of the digits 0–9. The active cathode is covered
with a negative glow while the others remain dark. The square grid visible in the
front serves as anode.

Fig. 11.7 Glow discharge
covering the number-shaped
cathodes in nixie tubes that
were used in early frequency
counters, digital voltmeters or
computing devices

11.1.7 The Positive Column

The positive column can have different appearances: an axially homogeneous state,
a striated appearance of standing bright structures (Fig. 11.8), or an apparently
homogeneous state, which at close inspection consists of striations that move rapidly
from anode to cathode. For simplicity, we will only discuss the homogeneous state,
and otherwise refer the reader to more specialized literature [68].

Fig. 11.8 Selforganisation
into standing striations of the
positive column of a
low-pressure glow discharge
in hydrogen gas. The cathode
is located on the left side
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The homogeneous positive column of a low-pressure glow discharge is a quasineu-
tral plasma region with Te 
 Ti. The equilibrium state of the positive column can
be described by a sequence of four steps:

1. The energy gain of the electron gas in the axial electric field establishes an equi-
librium temperature Te.

2. The ionization rate of gas atoms, i.e., the number of electron-ion pairs produced
per volume and time, is an increasing function of electron temperature.

3. The production rate in a segment �z of the positive column is balanced by an
equal amount of losses by ambipolar diffusion within this segment.

4. For fixed discharge current, this equilibrium is stable: When the electron density
falls under the equilibrium value, the conductivity of the segment becomes lower
and the electric field rises and increases the electron temperature and production
rate.

We had already discussed ambipolar diffusion in Sect. 4.3.3.1. The ambipolar
flux is given by (4.35) and (4.36). Solutions for the equilibrium density profile of
the positive column in a cylindrical discharge tube were discussed in Sect. 4.3.3.2.
The geometry for the balance of plasma production and (radial) diffusion losses is
sketched in Fig. 11.9.

For the (grey-shaded) cylindrical shell between r and r + dr we obtain the pro-
duction rate in this volume dV as

dne

dt

∣∣∣∣
gain

dV = νionne2πrdrdz . (11.11)

The loss rate is the difference of the ambipolar fluxes entering at r and leaving at
r + dr :

dne

dt

∣∣∣∣
loss

dV = 2π Dadz

[
r

dn

dr

∣∣∣∣
r
− (r + dr)

dn

dr

∣∣∣∣
r+dr

]

= −2π Dadz
d

dr

(
r

dn

dr

)
dr . (11.12)

Fig. 11.9 A short segment of
the positive column used in
calculating the particle
gain-loss balance. The short
radial arrows indicate the
ambipolar flow

aj(r) r

dr

dz
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Combining (11.11) and (11.12), we recover the Bessel-type equation (4.41), which
has the solution ne(r) = ne(0)J0(2.405r/a) shown in Fig. 4.14. This example
shows how a short segment of the positive column maintains its existence. Further,
we can conclude that the positive column can be extended to an arbitrary length,2

provided that the discharge current is kept constant. In other words, the positive
column requires a constant voltage drop per unit length (= axial electric field), as
can be seen in Fig. 11.2b.

11.1.8 Similarity Laws

Two gas discharges in cylindrical tubes have the same plasma parameters ne and Te,
when the following similarity conditions are fulfilled.

The mean energy gain of an electron in the dc electric field is proportional to the
product of the electric field and the mean free path, Eλmfp. Since the mean free path
is inversely proportional to the gas density, the energetics in the different regions
of a glow discharge is determined by the quantity E/p, where the gas pressure p
represents gas density. Therefore, the electron temperature in the positive column is
only a function of E/p and the kind of gas used.

In particular, Townsend’s electron multiplication coefficient can be written as
α = p f (E/p). It is then straightforward to conclude that the thickness of the normal
cathode fall (11.8) must be a fixed number of mean free paths for ionization, hence
dn ∝ 1/p. Likewise, the voltage drop Un of the normal cathode fall is a fixed
multiple of the energy gain per mean free path and therefore independent of gas
pressure. This allows the following conclusions about the similarity parameter for
the discharge current. The total discharge current is the same at each axial position
of the discharge tube. Hence, we can calculate it at the cathode. There, we have a
mobility-limited ion current, ji = eniμi E0, with the electric field at the cathode
E0 = 2Un/dn. The ion density is obtained from the ion space charge in the cathode
region nie = ε0 E0/dn. Then, with je = γ ji, the total current becomes

j = ε0μi
E2

0

dn
(1 + γ ) ∝ p2 . (11.13)

The proportionality to p2 results from E0 ∝ p, dn ∝ p−1, and μi ∝ p−1. Hence,
j/p2 is a similarity parameter.

2 Prof. Sanborn C. Brown told the anecdote of the gas-discharge pioneer Wilhelm Hittorf, who
attempted to find the maximum length of the positive column [353]. “Week after week his discharge
tube grew as he added meter after meter [. . . ] His tube went all the way across the room, turned and
came back, turned again until his laboratory seemed full of thin glass tubing. It was summer [. . . ]
and he opened the window to make it bearable. Suddenly from outside came the howl of a pack of
dogs in full pursuit and flying through the window came a terrified cat to land [. . . ] in the middle of
the weeks and weeks of labor. ‘Until an unfortunate accident terminated my experiment’, Hittorf
wrote, ‘the positive column appeared to extend without limit.’ ”
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The influence of the tube radius a on the discharge is given by the production-loss
balance (4.43), νion = Da (2.405/a)2. Noticing, that νion ∝ p and Da ∝ p−1,
we find that the product of gas pressure and tube radius, p a, must be a similarity
parameter. Similar scalings with p d were discussed for the breakdown voltage, the
thickness of the normal glow, and the dimensions of the hollow cathode.

Last not least, the p d scaling explains, why the diameter of fluorescent tubes
could be reduced from 1.5′′ to 1′′, or even to 1/4′′ in compact fluorescent tubes, with
a corresponding increase in gas pressure, after phosphor coatings were developed
that could withstand the increased heat flux. It is also not surprising, that modern gas
discharges at atmospheric pressure are tiny objects of sub-millimeter dimensions.

11.1.9 Discharge Modes of Thermionic Discharges

Low-pressure discharges with thermionic emitters are influenced by the formation
of electron space-charge in the cathode region. This space-charge cloud can limit the
discharge current by forming a virtual cathode (see Sect. 9.2.2), or by a sufficient
amount of ion current, can vanish and leave a temperature-limited emission current.
Four distinct discharge modes could be identified [354]:

1. the anode-glow mode
2. the ball-of-fire mode
3. the Langmuir mode
4. the temperature-limited mode

Figure 11.10 shows a typical volt-ampere characteristic of a thermionic discharge
[355] and identifies the topology of the potential distribution between cathode and
anode. The anode glow mode is found in the regime A–B′ on the hysteresis curve.
The corresponding potential distribution shows the formation of a potential barrier
(virtual cathode) before the cathode. In a layer before the anode, the potential rises
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Fig. 11.10 Hysteresis curve for a thermionic discharge (from [355]). The potential distribution for
the anode glow mode and the temperature limit mode are sketched on the right
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to the anode bias Ua. Only in this layer, the electrons gain sufficient energy to ionize
and to excite atoms, which explains the name anode glow mode (AGM).

Raising the discharge voltage, an unstable mode is reached between B′–B. This
is the ball-of-fire mode, in which the anode layer has expanded towards the cath-
ode and a sudden transition to C can occur. When the discharge is operated with a
series resistor that forces the point of operation to lie half-way between B and C, the
Langmuir mode is established, in which the anodic plasma fills a significant part of
the total volume but the current limitation by the virtual cathode is still active.

The discharge topology changes dramatically in the regime C–D, in which most
of the plasma volume has reached a potential, which lies slightly above the anode
potential because of the ambipolar field between plasma and anode. The voltage
drop occurs in the cathode sheath and the virtual cathode has vanished. Hence, the
full emission current from the cathode is available for electron injection, which is
only limited by the cathode temperature and justifies the name temperature limited
mode (TLM). Care must be taken that the ion bombardment of the cathode does not
lead to a thermal run-away of the cathode. When the discharge voltage is reduced
again, the transition to the AGM occurs at a significantly lower voltage (point E)
thus creating a large hysteresis in the volt-ampere characteristic.

11.2 Capacitive Radio-Frequency Discharges

The parallel plate discharge operated at 13.56 MHz frequency is the workhorse
among the low-pressure rf discharges for plasma etching or plasma-enhanced chem-
ical vapour deposition (PECVD).3 Under these conditions, the electrons have a ther-
mal energy of a few eV to bring atoms into excited states and dissociate molecules,
which facilitates chemical reactions. On the other hand, the heat content of the elec-
tron gas is still small because of the low electron density. This allows bringing the
plasma into contact with sensitive surfaces. Sometimes the principle, on which these
plasma applications are based, is named “cold heat”.

Why is it necessary to operate these discharges at radio frequency rather than
with dc? When a dielectric substrate is put on one of the electrodes of a parallel
plate reactor, the dc current is interrupted and the plasma will seek a connection
to the uncovered part of the electrode. This hardly gives the desired homogeneous
contact between plasma and substrate. However, when an rf voltage is applied, a dis-
placement current will flow in the substrate that establishes the connection between
plasma and electrode, and provides homogeneity.

The parallel plate discharge belongs to the family of capacitive rf discharges,
which means that the rf electric field results from surface charges on electrodes or

3 For operating powerful rf generators, safety issues must be observed according to accepted
national lab standards. Operating power generators at other frequencies than 13.56 MHz may be in
conflict with the rules set by communications authorities, such as the FCC in the United States.
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dielectrica. This distinguishes it from inductive discharges where the electric field
is generated by a time-varying magnetic field from an external antenna.

A first impression of the plasma in a parallel-plate discharge can be gained from
the photo in Fig. 11.11. The space between the electrodes is filled with plasma of
different luminosity. There are dark spaces adjacent to the electrodes and two glow
maxima.

Parallel plate discharges fall into different classes of operation:

• The applied rf voltage determines whether the discharge operates in the α-regime,
which is governed by ionization from electron avalanches, or in the γ -regime,
where electrons are produced at the electrodes by secondary emission from ion
bombardment.

• The two rf electrodes of the discharge can have equal or different areas.
• The discharge can be operated through a blocking capacitor, which leads to a dc

self-bias from rectifying the rf voltage in the sheath region.

Fig. 11.11 The plasma
luminosity in a symmetric
parallel-plate r.f. discharge.
The plasma is separated from
the electrodes by two dark
spaces. The luminosity of the
bulk plasma has two peaks

11.2.1 The Impedance of the Bulk Plasma

The distribution of the luminosity in the plasma suggests that we can split the plasma
into a central quasineutral bulk of thickness b and space charge sheaths of width s1
and s2 as sketched in Fig. 11.12. Let us first discuss the voltage drop across the bulk
plasma and neglect the sheaths. Then the problem is to determine the voltage drop
across a plasma-filled capacitor.

Fig. 11.12 Schematic of a
parallel plate discharge. The
electrodes form a capacitor of
area A and width d. The
capacitor is filled with a
plasma of thickness b and
dielectric constant εp, which
is separated from electrodes
by sheaths of width s1 and s2

d

b

s1 s2

A
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In electrical engineering, the time evolution of currents and voltages is described
by an exponential function that has the opposite sign in the phase factor compared
to our convention for plane waves in (6.8). For instance, the voltage drop across the
plasma bulk is given as

Ub = Ûb e+iωt . (11.14)

In this notation, the dielectric constant of the (collisional) plasma is

εp = 1 − ω2
pe

ω(ω − iνm)
. (11.15)

Here, νm is the electron-neutral collision frequency for momentum loss. The plasma
impedance is defined as the (complex) ratio of voltage and current for current flow
in a capacitor

Zb = Ûb

Îb
= 1

iωCb
. (11.16)

Introducing the capacitance of the empty capacitor, C0 = ε0 A/b, and noting that
Cb = εp C0, we obtain

1

Zb
= iωC0 + ω2

peC0

νm + iω
= iωC0 + 1

Rb + iωLb
. (11.17)

Here, we have defined the inductance of the bulk plasma as Lb = ω−2
pe C−1

0 , and the
resistance as Rb = νm Lb. The structure of (11.17) shows that the plasma impedance
is described by the network shown in Fig. 11.13. The inductor represents the elec-
tron inertia and the resistor the electron friction with the neutral gas.

Fig. 11.13 The impedance of
the bulk plasma comprises
the capacitor of the
electrodes, an inductor
(electron inertia) and a
resistor (electron collisions)

Rb Lb

C0

11.2.2 Sheath Expansion

The sheath of a rf discharge has a fast dynamical evolution. At f = 13.56 MHz, the
response of electrons and ions to the rf electric field is quite different. Remembering
that the response time of a particle species is given by the inverse plasma frequency,
we have the ordering fpi � f � fpe. This means that the ions cannot follow the



338 11 Plasma Generation

changing rf field and are only subject to the time-averaged fields. For the moment
we assume that the ions are immobile.

The electrons, however, can follow the instantaneous rf field. We will discuss
the electron dynamics in the sheath for the simplified situation of a matrix sheath,
which has a homogeneous ion density ni0, but is electron-free. A moving sheath-
edge separates the sheath from the quasineutral plasma region (Fig. 11.14). This
model was proposed by Godyak for the α-regime, e.g., [356], where electron release
from the electrode is negligible.

Let us consider the sheath of thickness s1 on the left side. In the homogeneous
ion space charge the electric field increases linearly with E(s1) = 0, and we have
E(0) = E0 = −eni0s1/ε0. Now let us assume that the potential on the left electrode
becomes more negative and the sheath expands. Then the sheath edge has a velocity
v1 = ds1/dt . This means that electrons are removed from the sheath with a total
conduction current density

jc = −eni0
ds1

dt
. (11.18)

At the same time, the sheath expansion by an amount ds1 leads to an increase in the
electric field

dE = − e

ε0
ni0 ds1 . (11.19)

This results in a displacement current inside the sheath,

jd = ε0
dE

dt
= −eni0

ds1

dt
, (11.20)

Fig. 11.14 Density, electric
field and potential
distribution in a parallel plate
discharge. The sheath on the
left side is assumed to
expand. The bulk plasma is
shifted to the new position
marked by the dashed frame
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which equals the conduction current on the plasma side. In this way, displacement
current and conduction current establish current continuity across the sheath bound-
ary.

Now, what happens to the surplus electrons, which have been injected into the
bulk plasma by the expanding sheath? This question is difficult to answer, and
requires kinetic theory or simulations with particle codes. However, the net effect
which is established in a few electron plasma periods is evident: Since we have
required that the bulk plasma is quasineutral and has the same ion density as the
sheath, ne = ni0, the surplus of electrons has to be injected into the sheath on the
right side. Hence, the sheath width s2 must shrink at the same rate as the sheath s1
expands, which gives ds2/dt = −ds1/dt and the thickness b of the bulk plasma is
constant.

When the parallel-plate discharge is operated with a current density j = ĵ exp(iωt),
it can be seen by integrating (11.18) that the sheath width has a linear response

ŝ1 = − 1

iω

ĵ

eni0
. (11.21)

The sheath edge performs a sinusoidal motion about an equilibrium width s0 with
amplitude ŝ1. The requirement that both sheaths have to collapse completely during
each rf cycle gives s0 = ŝ1.

The voltage drop across the sheath is obtained as

U1 =
s1∫

0

E dx = −eni0

2ε0
s2

1 = −eni0

2ε0
ŝ2

1

(
1 + 2eiωt + e2iωt

)
(11.22)

and has a non-linear response with contributions from the harmonic at 2ω. When
probe measurements are made in parallel plate discharges, filters are necessary to
block the first harmonic at 13.56 MHz and the second harmonic at 27.12 MHz.

In the same manner, the voltage drop across the r.h.s. sheath can be calculated as

U2 =
d∫

d−s2

E dx = −eni0

2ε0
s2

2 = −eni0

2ε0
ŝ2

2

(
1 − 2eiωt + e2iωt

)
(11.23)

For a negligible contribution from the bulk plasma, and using ŝ2
2 = ŝ2

1 , the entire
voltage drop across the discharge is then

U = U1 − U2 = −2eni0

ε0
ŝ2

1 eiωt . (11.24)

Because of the symmetry of the system, the constant and the second harmonic con-
tributions have canceled in the total discharge voltage U . This result is also true
when a non-negligible voltage drop occurs across the bulk plasma.
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11.2.3 Electron Energetics

11.2.3.1 Ohmic Heating

The total time-averaged power deposition inside the bulk plasma is determined by
the ohmic heat in the resistor Rb

〈P〉 = 1

2
Î 2 Rb . (11.25)

The factor 1/2 arises from the average of sin2(ωt) over one period.

11.2.3.2 Wave Rider or α-Regime

Ohmic heating of the plasma bulk is not the dominant process at low rf power and
low gas pressure. Rather, electrons gain energy from the expanding sheath. This
process is often called wave riding, although a better analogy is the momentum
exchange between tennis ball and tennis rack. Because the sheath electric field is
built up by all the ions inside the sheath, an electron that enters the sheath from the
plasma side with velocity v0 experiences a collision with a massive object. In the
frame of the expanding sheath, which moves at v1, the plasma electron enters the
sheath with v = v0 + v1 and leaves the sheath with v′ = −v. Hence, in the rest
frame the electron finally has v′ = v0 + 2v1.

The characteristic energy gained in one collision with the expanding sheath can
be obtained from (11.24) and using v̂1 = iω ŝ1. For v1 
 v0, we have

W ≈ 1

2
me(2v̂1)

2 = ε0me

e2ni0
ω2eÛ = ω2

ω2
pe

eÛ . (11.26)

The energy gain is therefore higher for increasing frequency. This is why in some
applications frequencies up to 100 MHz are used.

Now, what will the energetic electrons do after being reflected from the sheath?
Depending on gas pressure, the electrons can perform elastic and inelastic collisions
with gas atoms or, at very low pressure, even reach the sheath on the opposite side.
When they are scattered by elastic collisions, only a small fraction of their energy
is lost (see Sect. 4.4.1) and, for λmfp < s0, the electrons can perform multiple colli-
sions with the expanding sheath and gain the energy (11.26) at each collision.

It was shown in [357] that for low applied rf voltage (200 Vpp, typically) ion-
ization preferentially occurs near the sheath edge during the expansion phase of the
sheath. Since the expanding sheath sweeps up the new electrons from the ioniza-
tion process, an avalanche process is established. This justifies the name α-regime
because of its resemblance to the avalanches in the cathode region of a dc glow
discharge.

When the electron mean free path is comparable with the width of the bulk
plasma, stochastic heating sets in. Then, the electron is bouncing back and forth
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between the two sheaths gaining energy in a random way. This process is similar to
the Fermi acceleration mechanism for cosmic particles. There, the particles bounce
between moving magnetic mirrors that approach each other [358].

11.2.3.3 Secondary Emission or γ -Regime

When the applied rf voltage of a low-pressure rf discharge in helium is increased
above 400 Vpp, typically, a transition from the α-regime to a new γ -regime is found
[359], where electrons are liberated from the electrode by secondary emission after
ion bombardment, and gain their energy from the voltage drop across the sheath
rather than from sheath expansion. These electrons from the γ -process penetrate
the plasma and form a new intense glow in the plasma center [360] as shown in
(Fig. 11.15).

For low discharge power, the intensity distribution is characterized by two humps
near the electrodes and a lower intensity in the plasma center. This compares well
with the visual impression in Fig. 11.11. For high power, the γ -regime is established
with a strongly enhanced luminosity in the plasma center.

At the same time, the electron temperature in this central secondary glow drops
dramatically, e.g., from ≈ 3 to 0.5 eV in argon [361] or from 2.5 to 0.2 eV in helium
[361, 362]. This demonstrates that the secondary glow is produced by electrons
which have gained their energy in the sheath. The secondary glow is the analogon
to the negative glow of a dc discharge, which is maintained by beam electrons from
the cathode fall.

Fig. 11.15 Intensity
distribution of the helium line
388.9 nm (2 3S–3 3P) for low
and high discharge power
(from [360])
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11.2.4 Self Bias

In this paragraph, we discuss the influence of unequal areas of powered electrode
and grounded wall on the plasma potential, and the development of a dc contribution
to the sheath voltage (self bias), which is an intrinsic feature of capacitively coupled
discharges.
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Fig. 11.16 (a) Asymmetric
parallel plate discharge. (b)
Equivalent circuit
representing the sheath
regions and the bulk plasma

plasma

(a) (b)

R1

Zb

R2C2

C1

U(t)

In Fig. 11.16 an asymmetric discharge is sketched, in which the upper electrode
is powered and the lower grounded. The equivalent circuit for the discharge system
consists of two sheaths and the bulk plasma connected in series. The sheath is mod-
eled by a diode representing the electron flow in the sheath, a resistor R1,2 mimicing
the ion current, and the sheath capacity C1,2.

11.2.4.1 High-Frequency Regime

We will first discuss the situation at high frequency where the impedance of the
sheath is dominated by the capacitance, i.e., we take the limit R1,2 → ∞, and the
impedance of the plasma bulk becomes negligible |Zb| → 0 [363]. The discharge
voltage can be written as

U (t) = Udc + Urf sin(ωt) . (11.27)

Likewise, when we neglect the time variation of the sheath capacitance and the
resulting contribution from a second harmonic of the applied voltage, the plasma
potential becomes

Φp(t) = Φ̄p + Φrf sin(ωt) . (11.28)

The rf part of the plasma potential is determined by the capacitive voltage divider
formed by the two sheath capacitances, C1 and C2, in Fig. 11.16b

Φrf = C1

C1 + C2
Urf . (11.29)

Now, we have to consider the electron dynamics in the sheaths. When the sheath
collapses, the high electron mobility leads to an electron flow to the electrode as
soon as the plasma potential equals the electrode potential. This is described by
the diode symbols that short-circuit the sheath when the plasma potential becomes
negative w.r.t. one of the electrodes. Hence, we obtain limiting conditions for the
plasma potential

Φp,max = Φ̄p + Φrf ≥ Udc + Urf , Φp,min = Φ̄p − Φrf ≥ 0 . (11.30)
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Fig. 11.17 Synopsis of the operation modes of parallel plate discharges with direct coupling and
capacitive coupling. The six panels show the applied voltage U (t) (dashed line) and plasma poten-
tial Φp(t) (solid line) vs. time

For direct coupling between rf generator and electrodes, at least one of these
inequalities becomes an equality [363] as shown in the conceptual sketch
in Fig. 11.17.

When a blocking capacitor is inserted in series with the rf generator, the discharge
is called capacitively coupled. Then, in steady state, the net electric current over one
rf period must be zero

T∫
0

I (t) dt = 0 . (11.31)

This can only be established, when an electron flow is flowing for a short time during
the rf cycle to both electrodes. This has the consequence that both inequalities in
(11.30) become equalities and we can solve this set of equations for the mean plasma
potential Φ̄p and self-bias voltage Udc

Φ̄p = 1

2
(Udc + Urf) , Udc = C1 − C2

C1 + C2
Urf . (11.32)

11.2.4.2 Low-Frequency Regime

At low frequencies, the conduction current in the sheath becomes larger than the
displacement current from sheath expansion. Then, a capacitively-coupled discharge
develops a self bias because of the non-linearity of the current-voltage characteristic
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of the sheath, which can be considered as the characteristic of a plane probe (see
Sect. 7.4)

I (U ) = I i0 + I e0 exp

(
e(U − Φp)

kBTe

)
. (11.33)

To illustrate the principle, let us assume that the impedance of the wall sheath is
much smaller than that of the small powered electrode. Then the plasma potential
is close to zero and it is sufficient to consider only one sheath characteristic. The
self-bias voltage is again derived from the condition (11.31) that the integral of the
current over one period vanishes

0 = I i0T + I e0

T∫
0

exp

(
eUdc + Urf sin(ωt)

kBTe

)
dt . (11.34)

After integration we obtain the self-bias as

Udc = kBTe

e
ln

[
I0

(
eUrf

kBTe

)]
, (11.35)

where I0(x) is the modified Bessel function. In the language of electronics, the
sheath acts as a rectifier that charges the blocking capacitor.

11.2.5 Application: Anisotropic Etching of Silicon

The development of a high dc voltage across the sheath adjacent to the smaller pow-
ered electrode has a dramatic influence on the energy at which ions impinge on the
electrode or on a substrate lying on this electrode [364]. Ions of more than 400 eV
energy lead to sputtering of the surfaces. The combination of sputtering and chem-
ical etching, a process known as reactive ion etching (RIE) is an efficient means
for highly anisotropic etching of silicon, see Fig. 11.18a. The highly directional ion
flow preferentially hits the bottom of the etched trench.

Experiments on the action of ion bombardment and the presence of an etching
gas (XeF2) [365] have shown that the combination of sputtering and chemical etch-
ing is a cooperative mechanism which leads to an etch rate that is far greater than
the sum of the individual processes, see Fig. 11.18b. This cooperative effect makes

Fig. 11.18 (a) Sketch of
deep-trench etching in
silicon. (b) Cartoon of the
dependence of the etch rate
on the combination of
reactive gas (XeF2) and ion
bombardment
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anisotropic etching of deep trenches possible because it acts predominantly at the
trench bottom while there is apparently no such cooperation at the trench walls.
Aspect ratios of up to 40:1 can be achieved. This technology finds applications in
dynamic memory chips, where the storage capacitor for a single bit can be efficiently
stowed in such a deep trench, which makes economic use of the chip area. Other
applications are in etching of micro-mechanical devices from silicon.

When ion bombardment is an unwanted effect, say in film deposition, the sub-
strates are positioned on the larger grounded electrode that develops a much smaller
dc voltage across the sheath.

11.3 Inductively Coupled Plasmas

Inductively coupled plasmas (ICPs) became relevant for the semiconductor industry
because of the necessity to achieve higher plasma densities of ni = (1–3)×1017 m−3

in low pressure (p=(0.11–2) Pa) discharges. Higher densities lead to faster reac-
tion rates that boost the economy of the process [366–368]. Capacitive discharges
were limited to achieve this regime because the plasma density was only increasing
with the square root of the applied power. Moreover, the necessity to transport the
applied power through the sheath regions generated high voltage drops across the
sheath, and ions gained energies of several hundred eV from the sheath potential,
which could damage the integrated circuits. Inductive power transport to the plasma
keeps the voltage drop across the sheath low and leads to moderate ion energies of
(24–40) eV.4

An ideal ICP acts like a transformer with the primary being a coil that is posi-
tioned close to the plasma, and the plasma forming a single-turn secondary. This
type of discharge was also known as ring discharge. Typical arangements for helical
and flat coil designs are sketched in Fig. 11.19. An essential feature of ICPs is that,
because of the skin effect, rf fields can only penetrate into a limited zone of the
plasma close to the exciter coil.

Fig. 11.19 (a) Inductively
coupled plasma (ICP) with a
helical coil wound around
discharge tube. (b) ICP with a
flat spiral coil on a quartz
window. Quartz glass has low
dielectric losses and can
withstand high coil
temperatures
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4 ICPs are intrinsically high-power rf discharges. Therefore, the safety issues and radio-
interference problems need even more attention.
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11.3.1 The Skin Effect

When an electromagnetic wave hits a conducting surface, the wave fields penetrate
into the conducting material. There, according to Lentz’s rule, electric currents of
opposite polarity weaken the wave fields and lead to an exponential decay of the
wave amplitude. This is the skin effect, which is well known in radio science where
it describes the fact that rf currents flow only in a thin outer layer of conductors.

The skin effect can be easily understood assuming that a plane electromagnetic
wave propagates in x-direction and hits a conductor that fills the halfspace x > 0
at normal incidence, as shown in Fig. 11.20. The wave electric field is assumed to
lie in the y direction and the wave magnetic field in z-direction. The wave fields are
described by Ey(x, t) = Êy exp[i(kx − ωt)] and Bz(x, t) = B̂ exp[i(kx − ωt)].
Faraday’s induction law (5.2) and Ampere’s law (5.4) then read

∂Ey

∂x
= −∂Bz

∂t
, −∂Bz

∂x
= μ0σ Ey , (11.36)

where we have set j = σE and neglected the displacement current ε0∂E/∂t . We are
allowed to do so when σ 
 ωε0. Then, the electric field obeys a wave equation of
the type

∂2 Ey

∂x2 = μ0σ
∂Ey

∂t
. (11.37)

Inserting the harmonic wave ansatz, we obtain

− k2 Êy = −iωμ0σ Êy . (11.38)

which leads to a complex wavenumber

k = (iωμ0σ)1/2 = (ωμ0σ)1/2 1 + i√
2

. (11.39)

Finally the wave electric field describes a damped wave of the type

Ey(x, t) = Êye−x/δ0 ei(kr x−ωt) (11.40)

Fig. 11.20 Penetration of an
electromagnetic wave into a
conducting halfspace x > 0.
The skin depth is marked
with δ

vacuum conductor
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with a characteristic length δ0, the classical skin depth, given by

δ0 =
(

2

ωμ0σ

)1/2

. (11.41)

When the electron-neutral collision frequency fulfills νm > ω, we can approximate
the conductivity by its dc value (4.30) and obtain

δ0 = c

ωpe

(
2
νm

ω

)1/2
. (11.42)

For discharges operated at 13.56 MHz, this assumption is valid for p > 2 Pa in
argon and Te ≈ 4 eV. For lower pressures, p < 0.1 Pa, the collisionless skin depth
is approached

δcl = c

ωpe
. (11.43)

This limiting case is obtained from the full expression (6.44) for the complex
wavenumber in the limit ω2 � ω2

pe and νm � ω. A detailed discussion of the
skin effect in plasmas can be found in [369].

11.3.2 E and H-Mode

ICPs can be operated in a low-power electrostatic mode, or E-mode, which is mostly
found in the plasma density range 1014 − 1016 m−3. The real inductive mode, or
H-mode,5 is found for higher plasma densities of 1016 − 1018 m−3. The mechanism
of E-mode and H-mode is illustrated in Fig. 11.21.

The E-mode is characterized by an rf electric field, that originates from the rf
voltage drop across the exciter coil of the ICP discharge. Plasma density in the
E-mode is low and leads to a skin depth that is larger than the plasma dimension.
The E-mode resembles the parallel plate discharge and leads to energetic ions from

Fig. 11.21 (a) The E-mode is
governed by the electric field
of the spiral coil. (b) In the
H-mode, a ring-shaped
electric field and
corresponding ring-current is
established in the skin layer,
which heats the electrons

skin layer

Icoil

Iplasma
EE

(a) (b)

quartz
window

spiral
coil

5 This terminology should not be confused with the high-confinement mode in tokamaks.
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the sheath region. It is possible to suppress the E-mode by using a so-called Faraday
shield consisting of a thin grounded copper sheet with slits that are oriented at right
angle to the current flow in the antenna.

The H-mode (Fig. 11.21b) deposits the rf energy in the plasma by accelerating
electrons by the ring-shaped induction field inside the skin layer. The electron flow
represents a ring-current that has the opposite direction as the rf current in the exciter
coil. This current system is the single winding of an air-core transformer, which con-
sists of the multiwinding exciter coil and the skin layer of the plasma. The transition
between E-mode and H-mode is characterized by a sudden jump of electron density
when the discharge power is raised above a critical value (Fig. 11.22).

Fig. 11.22 The transition
between the E-mode and
H-mode is marked by a
sudden jump in plasma
density

H-MODE

E-MODE
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11.3.3 The Equivalent Circuit for an ICP

The ICP plasma can be described by an equivalent circuit that contains the plasma
properties as lump circuit elements. Figure. 11.23 shows the rf generator with a
typical impedance of 50 �, the matching network and the plasma. Basically, the
capacitors C1 and C2 of the matching network and the inductance L1 of the exciter
coil form a resonant circuit that is tuned to the frequency of the generator. This
resonant circuit is damped by the coil resistance R1 and the plasma load Relectron. In
the H-mode, the plasma impedance is low, typically 1�. Hence the exciter coil acts
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Fig. 11.23 Equivalent circuit for an inductively coupled plasma
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as a step-down transformer with about seven primary windings and the plasma as a
single winding. The ratio C1/C2 is often determined experimentally to fulfill both
the resonance condition and the matching to the generator impedance.

The section denoted capacitive coupling consists of the capacitance of the quartz
window, the RC model for the sheath and the impedance Rbulk of the bulk plasma.
A detailed discussion of matching an ICP to the generator can be found in [370].

11.4 Concluding Remark

The abridged discussion of plasma generation given so far cannot replace the rich
details given in textbooks on plasma discharges, e.g., [68, 370–372] or monographs,
e.g., [373]. Nor can it cover the up-to-date understanding of fine details that are
reported in a huge number of original papers. The lack of space is the only excuse
for the author to omit many important new discoveries in this vivid field of research.

The Basics in a Nutshell

• Electrical breakdown of a gas by an applied dc voltage occurs when the
ions produced in an initial ionization avalanche can liberate new electrons
from the cathode. The ignition condition for a gap of width d is given by
1 = γ (eαd −1) with the secondary yield γ and gas multiplication factor α.

• Paschen’s law states that, for any combination of gas and cathode material,
there is a minimum breakdown voltage at a specific value of p d.

• A dc glow discharge is characterized by the cathode fall, the negative glow
and, for sufficient length, the positive column. The negative glow is pro-
duced by energetic electrons from the cathode fall.

• The particle balance of the positive column is determined by radial losses
from ambipolar diffusion and ionization by electrons. The electron temper-
ature is determined by the energy gain of an electron in the axial electric
field between two elastic collisions, and is therefore a function of E/p.

• The parallel-plate discharge provides two operation regimes, a low-power
regime in which electrons are heated by sheath expansion, and a high-
power regime where secondary electrons released from the electrode gain
energy from the voltage drop across the sheath.

• Asymmetric parallel-plate discharges with a blocking capacitor develop a
large voltage drop across the sheath of the smaller electrode, called self-
bias. Therefore, ions can gain considerable energy in the sheath and hit a
substrate with a highly directive flow. A synergism of directed ion bom-
bardment and chemical etching leads to highly effective, anisotropic etch-
ing of deep trenches in silicon.

• At high frequencies, self bias results from a capacitive voltage divider
formed by the two sheath capacitances and the condition of sheath collapse
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at both electrodes. For low frequencies, the diode-like characteristic of the
sheath rectifies the rf voltage and charges the blocking capacitor.

• The bulk plasma of a parallel-plate discharge can be represented by a
combination of an inductor (representing electron inertia) in series with
a resistor (representing electron-neutral collisions), and a parallel capacitor
(representing the electric field in the bulk plasma).

• Inductively coupled plasmas represent an air-core transformer consisting
of a spiral coil and a ring current in the skin-layer of the plasma. This is
the operation in the inductive, or H-mode. At low rf power, an electric or
E-mode is found, where the electric field of the spiral coil penetrates the
plasma and accelerates electrons.

Problems

11.1 In the gap between parallel electrodes, an electron avalanche is triggered by
a first electron generated by cosmic rays at the negative electrode. When does the
electric current start to flow in the outer circuit? Sketch the expected current vs.
time.

11.2 The afterglow of a long cylindrical plasma (of radius a) is described by the
time-dependent diffusion equation

∂n

∂t
− Da

(
∂2n

∂r2
+ 1

r

∂n

∂r

)
= 0 .

(a) Separate the variables by the product-ansatz n(r, t) = R(r)T (t) and show that
the time dependence can be written as T (t) = exp(−t/τ).
(b) Show that the radial profile can be a Bessel profile of the type R(r) ∝ J0(r/�),
and determine � from the boundary condition R(a) = 0.
(c) Show that the decay time is τ = D−1

a (a/2.405)2.

11.3 Consider the impedance (11.17) of the bulk plasma in a parallel-plate rf dis-
charge in the limit ω2 � ω2

pe and ωνm � ω2
pe. Compare the sum of the impedances

of the inductor Lb and resistor Rb in the equivalent network with the impedance of
the capacitor C0, and show that the current in the capacitor is negligible.

11.4 What is the collisionless skin depth for a plasma of ne = 1017 m−3 density?
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Symbol Definition Equation Section

a minor radius of a torus (3.53) 3.6.3
a acceleration (4.55) 4.4.2.1
a radius of a dust particle 10.1.3.2
aWS Wigner-Seitz radius (2.16) 2.1.3
Abr coefficient for bremsstrahlung (4.64) 4.4.2.3
AR coefficient in Richardson’s law (11.10) 11.1.5
b impact parameter 4.2.5
bc impact parameter for charge collection (10.5) 10.1.3
b90 impact parameter for 90◦ deflection (4.20) 4.2.5
Bbc,Bcb Einstein coefficients 8.1.1
Bm maximum magnetic field in a mirror 3.4.2
Bp poloidal magnetic field (3.55) 3.6.1
Br radial magnetic field 4.3.5
Bt toroidal magnetic field (3.52) 3.6
Btot total magnetic mirror field 3.4.2
B magnetic field vector 3.1
B̂ Fourier amplitude of B (6.8) 6.1.2
bπ/2 impact parameter for 90◦ deflection 10.2.4
C capacitance of a dust particle (10.10) 10.1.3.2
C0 capacitance of bulk plasma (11.16) 11.2.1
CL sound speed of longitudinal mode (10.93) 10.4.1.5
cs sound velocity (6.79) 6.5.3
Cs ion acoustic velocity (6.78) 6.5.3
CT sound speed of transverse mode 10.4.1.5
D diffusion coefficient (4.31) 4.3.3
D Stix parameter (6.90) 6.6
D spring constant (10.87) 10.4.1.1
D(ω,k) dispersion function (6.29) 6.2
Da ambipolar diffusion coefficient (4.36) 4.3.3.1
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d0 equilibrium distance of dust particles (10.68) 10.2.5
dn thickness of the normal cathode fall (11.8) 11.1.3
D̂ω Fourier coefficient of displacement vector (6.12) 6.1.3
Ea ambipolar electric field (4.37) 4.3.3.1
E p electric field at grid point p (9.81) 9.4.1
E electric field vector 3.1
Ê Fourier amplitude of E (6.8) 6.1.2
fb burn fraction of a pellet (4.74) 4.4.3.4
Fc collection force (10.46) 10.2.4
Fdefl deflection force 8
fe1 perturbed electron distribution function (9.35) 9.3.1
Fg gravitational force on dust grain 10.2.1
Fi force on i-th particle (9.82) 9.4.1
fm resonance frequencies of a cavity (6.58) 6.4.4
Fi ion wind force (10.45) 10.2.4
fM Maxwell distribution, general (2.10) 2.1.1
fM(v) Maxwell distribution of speeds (4.6) 4.1
fM(vx ) shifted Maxwellian (5.5) 5.1.2
f (1)
M 1D Maxwell distribution (4.1) 4.1

f (3)
M 3D Maxwell distribution (4.5) 4.1

FM(W ) Maxwell distribution of energies (4.9) 4.1.4
Fn Epstein drag force (10.41) 10.2.2
Fo orbit force (10.58) 10.2.4
Fp ponderomotive force (3.63) 3.7.1
Frest restoring force 8
Ftp thermophoretic force (10.43) 10.2.3
Ftrap force exerted by potential trap (10.66) 10.2.5
FY Yukawa interaction force (10.64) 10.2.5
f+(x, v) part of distribution function (9.25) 9.2.1
f−(x, v) part of distribution function (9.27) 9.2.1
F<, F> force from inside and outside (10.75) 10.3.4
g gravitational acceleration on Earth (10.32) 10.2.1.1
gL Lunar gravitational acceleration 10.1.2.1
gi degeneracy factor of atomic level i 2.1.1
g(T ) used in calculation of burn fraction (4.74) 4.4.3.4
Hp poloidal magnetic field (3.54) 3.6.1
Ht toroidal magnetic field (3.51) 3.6
H0 scale height (1.2)
I moment of inertia (9.85) 9.4.2
Ie,sat electron saturation current of a probe (7.29) 7.4.2
Ii,sat ion saturation current of a probe (7.27) 7.4.1
Ip probe current 7.4
IN particle flux (5.14) 5.1.4
IP momentum flux (5.16) 5.1.4
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Iph Photoelectron current (10.3) 10.1.2
j current density (4.29) 4.3.2
je electron current density (4.29) 4.3.2
ji ion current density (4.29) 4.3.2
jmax,Pierce maximum current in a Pierce diode (8.39)
jt toroidal current density (3.53) 3.6.3
ĵ Fourier amplitude of j (6.8) 6.1.2
J longitudinal invariant 3.4.3
J0 initial angular momentum 7.5.4
k wavenumber (6.8) 6.1.2
K normalized wavenumber (10.90) 10.4.1.2
kI spatial growth rate (8.20) 8.1.5
kB Boltzmann’s constant 2.1
kk tensor product of wave vecors (6.27) 6.2
k+, k− wavenumbers of beam modes (8.26) 8.3.2
� length scale 2.2.2
Lb inductance of bulk plasma (11.17) 11.2.1
ma mass of an atom (4.49) 4.4.1
me electron mass
mi ion mass
m∗ effective mass describing collisions (6.43) 6.3.2
md dust mass (10.32) 10.2.1.1
m∗

e effective electron mass 6.3.2
m� solar mass Table 1.1 1.2
M Mach number (7.18) 7.3.2
M magnetic dipole moment 3.1.3
Ms total mass of spherical pellet (4.75) 4.4.3.4
n density 2.1
nco cut-off density (6.50) 6.4
ne electron density 2.1
ne0 unpertubed electron density 2.2.1
ni ion density 2.1
ni0 unperturbed ion density 2.2.1
nA+ ion density 2.1.2
ni population density of atomic state i (2.10) 2.1.1
N number of particles
N (r) number of particles inside r (10.72) 10.3.4
Na number of atomic targets (4.13) 4.2.2
NDe number of particles in electron Debye

sphere
(2.33) 2.3.1

N (α) total number of particles of species α (9.5) 9.1.1
N refractive index (6.24) 6.1.6
NL refractive index of L-mode (6.96) 6.6.2
NR refractive index of R-mode (6.95) 6.6.2
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p pressure 2.1
P Stix parameter (6.90) 6.6
P Havnes parameter (10.27) 10.1.6
p(t) time-dependent probability (4.44) 4.3.4
Pbr Power in bremsstrahlung (4.59) 4.4.2.1
PDT Power from D–T reaction (4.63) 4.4.2
Pe, Pi probability of capturing an electron (ion) (10.18) 10.1.5
Pfus Power from fusion reaction 4.4.2.5
Pi j stress tensor (5.29) 5.1.5
PH heat loss rate (4.62) 4.4.2
pmag magnetic pressure (5.47) 5.2.2
Px x-component of momentum vector (5.23) 5.1.4
Q electric charge 2.2.1
Q quality factor of a resonator 6.4.4
qd dust charge (10.11) 10.1.3.2
QDT fusion yield of D–T reaction 4.4.2.2
Qα energy of α-particles 4.4.2.4
r radius 2.2.1
rL Larmor radius (3.5) 3.1.2
R major radius of a torus 3.6.3
R equivalent resistance of charging

characteristic
(10.15) 10.1.4

Rb resistance of bulk plasma (11.17) 11.2.1
rC Coulomb radius (10.55) 10.2.4
R(T ) recombination rate 2.1.2
Rc radius of curvature 5.2.2
RC radius of a Coulomb ball (10.81) 10.3.4
Rhs radius of hot spot (4.70) 4.4.3.3
Rm mirror ratio 3.4.2
R1, R2 electrical resistors 2.2.1
Rtotal resistance of parallel circuit 2.2.1
s distance 2.2.1
S entropy (2.3) 2.1.1.1
S Stix parameter (6.90) 6.6
s1, s2 sheath thickness (11.18) 11.2.2
S(k, ω) spectral energy density (10.96) 10.4.2
S(Wλ) energy density of solar spectrum (10.3) 10.1.2
Sion ionization rate (4.18) 4.2.3
S(T ) ionization rate 2.1.2
T temperature
T tension
Td dust temperature 10.4.3
Te electron temperature 2.1
Ti ion temperature 2.1
�tk variable time step for charge capture (10.20) 10.1.5
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Tph effective temperature of photoelectrons (10.4) 10.1.2
u drift velocity 5.1.1
U1, U2 sheath voltage (11.22) 11.2.2
ui ion streaming velocity 7.2
Ub voltage drop in bulk plasma (11.16) 11.2.1
Ubd breakdown voltage (11.6) 11.1.3.1
Udc self bias voltage (11.27) 11.2.4
Uind induction voltage 5.1.1
Un normal cathode fall voltage 11.1.3
Up probe voltage 7.4
Urf radio-frequency voltage (11.27) 11.2.4
v velocity
v velocity vector 3.1
vx , vy , vz components of the velocity vector 3.1
v̄x , v̄y average velocities (4.46) 4.3.4
vA Alfvén velocity (5.83) 5.3.5
vb velocity of a beam electron (8.11) 8.1.4
vc cut-off velocity (9.24) 9.2.1
vB Bohm velocity (7.17) 7.3.2
vd drift velocity (4.27) 4.3.1
vD diamagnetic drift velocity (5.50) 5.2.3
vE E×B drift velocity (3.12) 3.1.4
vexhaust exhaust velocity 4.4.3.2
vg gravitational drift velocity (3.14) 3.1.5
vgr group velocity vector (6.23) 6.1.5
vm mass flow velocity (5.56) 5.3.1
vp polarisation drift velocity (3.47) 3.5.1
vR curvature drift velocity (3.23) 3.2.3
vshell velocity of imploding shell (4.69) 4.4.3.2
vth mean thermal speed (4.7) 4.1.3
vT most probable speed (4.4) 2.3.1
v0 initial beam velocity (8.3) 8.1.2
v+,v−,v̄ contributions to the Pierce mode (8.33) 8.3.3
v⊥ perpendicular velocity 3.4.2
v∇ B gradient drift velocity (3.21) 3.2.2
vϕ phase velocity (6.18) 6.1.4
W energy 2.1.1
W (x) charge assignment function (9.79) 9.4.1
Wb binding energy
Wex excess energy
W0 initial energy 7.5.4
Wion ionisation energy 4.2.4
Wkin kinetic energy (4.8) 4.1.3
Wm maximum energy in secondary emission (10.2) 10.1.1
〈Wkin〉 mean beam kinetic energy (8.17) 8.1.4
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Wpot potential energy (9.84) 9.4.2
WR work function in Richardson’s law (11.10) 11.1.5
Wtot total energy (8.40), (9.86) 9.4.2
WY energy of Yukawa interaction (10.63) 10.2.5
W⊥ energy of perpendicular motion (3.49) 3.5.2
xmin position of potential minimum in diode (9.25) 9.2.1
Z partition function 2.1.1
Zb impedance of bulk plasma (11.16) 11.2.1
Zd dust charge number = |qd|/e (10.13) 10.1.3.2
Z j charge number of species j 2.2.2
α index denoting particle species (6.80) 6.6
α Townsend’s electron multiplication factor (11.1) 11.1.3.1
αb beam fraction in beam-plasma system (8.3) 8.1.2
αP Pierce parameter (8.37) 8.3.1
α(L) angle of Faraday rotation (6.100) 6.6.2.1
β ratio of kinetic and total pressure (5.51) 5.2.3
γ growth rate 8.1.3
γ coefficient for secondary emission by

ion impact
(11.4) 11.1.3.1

Γ coupling parameter (2.15) 2.1.3
Γa ambipolar flux (4.34) 4.3.3.1
Γe,i flux of electrons (ions) (4.31) 4.3.3
δ accomodation coefficient for Epstein

friction
(10.42) 10.2.2

δ0 skin depth (11.41) 11.3.1
δcl collisionless skin depth (11.43) 11.3.1
δ(W ) secondary emission coefficient (10.1) 10.1.1
δm maximum of δ(W ) (10.2) 10.1.1
ε dielectric function for cold plasma (6.45) 6.4
ε . . . for beam-plasma system (8.2) 8.1.2
ε . . . for ion-acoustic wave (6.75) 6.5.3
ε dielectric tensor (6.89) 6.6
εxx , εyy , εzz elements of the dielectric tensor (6.34) 6.3.1
η resistivity (4.22) 4.2.5
η efficiency of energy conversion (4.63) 4.4.2
ηc normalized cloud potential (10.25) 10.1.6
ηf normalized grain potential (10.25) 10.1.6
ηs Spitzer resistivity (4.23) 4.2.5
θ angle w.r.t. magnetic field direction 3.4.2
θ normalized frequency for Pierce modes 8.3.3
θc resonance cone angle (6.105) 6.7
θm loss cone angle (3.56) 3.6.3
λ wavelength 6.4
λ Lagrange multiplier 2.1.1.1
ln(Λ) Coulomb logarithm (10.61) 10.2.4
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λB de Broglie wavelength (2.36) 2.3.2
λD Debye length 2.2.1
λDe Electron Debye length (2.28) 2.2.1
λDi Ion Debye length (2.28) 2.2.1
λmax maximum of Planck curve (2.14) 2.1.2
λmin shortest wavelength in crystal 10.4.1.1
λmfp mean free path (4.14) 4.2.2
λs modified shielding length (10.56) 10.2.4
μ Lagrange multiplier 2.1.1.1
μ magnetic moment (3.34) 3.3.2
μ ion-to-electron mass ratio
μ Mach cone angle (10.94) 10.4.1.7
μe electron mobility (4.28) 4.3.1
μi ion mobility (4.28) 4.3.1
νcoll collision frequency (4.15) 4.2.2
νDT deuterium-tritium collision frequency (4.60) 4.4.2.2
νei electron–ion collision frequency (4.21) 4.2.5
νion ionization frequency (4.17) 4.2.3
νm momentum loss frequency (4.25) 4.3.1
ξ(Wλ) photoelectric efficiency (10.3) 10.1.2
Ξd normalized dust collision frequency (10.90) 10.4.1.2
ρ charge density (5.1) 5.1.1 / 5.1.3
ρm mass density in MHD (5.38) 5.2
ρd mass density of dust material 10.2.1
ρp assigned charge to gridpoint p (9.78) 9.4.1
ρ0 initial mass density 4.4.3.4
ρ R density-radius product for a pellet 4.4.3.4
σ cross section (4.13) 4.2.2
σ conductivity 4.3.2
σc cross section for charge collection (10.5) 10.1.3
σe,i electron (ion) conductivity (4.30) 4.3.2
σxx , σyy , σzz elements of conductivity tensor (6.32) 6.3.1
σ conductivity tensor (4.47) 4.3.4
σion cross-section for ionization (4.16) 4.2.3
τ elapsed time (9.20) 9.2.1
τ relaxation time of dust charge (10.16) 10.1.4
τ temperature ratio Te/Ti (10.26) 10.1.6
τB magnetic diffusion time (5.62) 5.3.2
τc inertial confinement time (4.68) 4.4.3.1
τE energy confinement time 4.4.2.5
ϕ phase angle of a wave (6.16) 6.1.4
ϕair, ϕp phase angle in air (plasma) 6.4.3
ϕ1,ϕ2 phase angles of second harmonic 6.4.3
Φ electric potential 2.2.1 / 7.2
Φf floating potential (probe) (7.34) 7.4.4
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Φf floating potential (dust grain) (10.8) 10.1.3.1
Φp potential at gridpoint p (9.80) 9.4.1
Φp plasma potential 7.4
Φm magnetic flux 5.1.1
Φmin minimum potential in a diode ()9.28 9.2.2
χ empirical constant for photoemission (10.4) 10.1.2
χ scattering angle (10.57) 10.2.4
χb permittivity of beam electrons (8.3) 8.1.2
χd permittivity of dust system (10.99) 10.4.3
χe permittivity of cold electrons (8.21) 8.2
χi permittivity of ions (8.21) 8.2
χp permittivity of plasma electrons (8.2) 8.1.2
ψ angle between k and B (6.91) 6.6.1
ω angular frequency 3.1 / 6.6.2
Ω normalized frequency 10.4.1.2
ωbr breathing frequency of dust cluster (10.69) 10.2.5
ωc cyclotron frequency (3.4) 3.1.2
ωce electron cyclotron frequency 3.1.2
ωci ion cyclotron frequency (6.84) 6.6.1
ωI imaginary part = growth rate (8.9) 8.1.2
ΩL normalized frequency of long. mode (10.90) 10.4.1.2
ωlh lower hybrid frequency (6.104) 6.6.3
ωpd dust plasma frequency (10.98) 10.4.3
ωpe electron plasma frequency (2.32) 2.2.3
ωpi ion plasma frequency (6.75) 6.5.3
ωR real part of wave frequency (8.8) 8.1.2
ΩT norm. frequency of transverse mode (10.91) 10.4.1.2
ωuh upper hybrid frequency (6.103) 6.6.3
ω0 plasma frequency for strongly coupled

system
(10.89) 10.4.1.1



Appendix: Constants and Formulas

“Reeling and Writhing, of course, to begin with,” the Mock
Turtle replied; “and then the different branches of
Arithmetic—Ambition, Distraction, Uglification and
Derision.”

Lewis Carroll, Alice in Wonderland

1 Physical Constants

The physical constants are given here in SI-units with four digits accuracy. For
problem solving in plasma physics, often two digits are sufficient in view of the
uncertainty of measured plasma parameters.

Table 1 Physical constants

Electron mass me = 9.109 × 10−31 kg
Proton mass mp = 1.673 × 10−27 kg
Proton-electron mass ratio mp/me = 1836
Elementary charge e = 1.602 × 10−19 A s
Specific charge of electron e/me = 1.759 × 1011 C kg−1

Speed of light in vacuum c = 2.998 × 108 m s−1

Permittivity of free space ε0 = 8.854 × 10−12 A s V−1 m−1

μ0 = 1.257 × 10−6 V s A−1 m−1

Boltzmann constant kB = 1.381 × 10−23 J K−1

Temperature associated with 1 eV e/kB = 11,600 K V−1

Stefan-Boltzmann constant σ = 5.670 × 10−8 Wm−2K−4

Planck’s constant h = 6.626 × 10−34 Js
h̄ = h/2π = 1.055 × 10−34 Js

Avogadro’s constant NA = 6.022 × 1023 mol−1

Molar gas constant R = 8.314 J K−1 mol−1

Standard temperature 273.15 K
Earth mass ME = 5.974 × 1024 kg
Mean Earth radius RE = 6.371 × 106 m
Universal gravitational constant G = 6.673 × 10−11 Nm2kg−2

Gravitational acceleration g = G ME/R 2
E = 9.807 ms−2
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2 List of Useful Formulas

This compilation was inspired by the NRL plasma formulary, which is available
free of charge at http://wwwppd.nrl.navy.mil/nrlformulary/. However, SI-
units are used here for consistency with the rest of the book. Temperatures are given
in eV, as indicated.

2.1 Lengths

The mass number of an ion is μ = mi/mp.

• electron Debye length

λDe,Di = 7.43 × 103 m

√
Te,i(eV)

ne,i(m−3)

• thermal electron gyroradius

rLe = vTe

ωce
= 3.37 × 10−6 m

√
Te(eV)

B(T)

• thermal ion gyroradius

rLi = vTi

ωci
= 1.45 × 10−4 m

√
μTi(eV)

B(T)

2.2 Frequencies

• electron plasma frequency

ωpe =
√

nee2

ε0me
= 56.4 s−1

√
ne(m−3)

• ion plasma frequency

ωpi =
√

ni Z2e2

ε0mi
= 1.32 s−1 Z

√
ni(m−3)

μ

• electron gyrofrequency

ωce = eB

me
= 1.76 × 1011s−1 B(T)
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• ion gyrofrequency

ωci = ZeB

mi
= 9.58 × 107s−1 Z

μ
B (T)

2.3 Velocities

• electron thermal speed

vTe =
√

2kBTe

me
= 5.93 × 105 m s−1

√
Te(eV)

• ion thermal speed

vTi =
√

2kBTi

mi
= 1.38 × 104 m s−1

√
Ti(eV)

μ

• ion sound speed

Cs =
√

kB(Te + 3Ti)

mi
= 9.79 × 103 m s−1

√
(Te + 3Ti)(eV)

μ

• Alfvén speed

vA = B√
μ0nimi

= 2.18 × 1016 m s−1 B(T)√
μ ni(m−3)

3 Useful Mathematics

3.1 Vector Relations

The definitions of dot product and vector product of two vectors can be summarized
as follows:
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A · B = Ax Bx + Ay By + Az Bz

A × B =
∣∣∣∣∣∣

ex ey ez
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣
= ex (Ay Bz − Az By) + ey(Az Bx − Ax Bz) + ez(Ax By − Ay Bx )

A · B = B · A

A × B = −B × A

The operator A · ∇ is a scalar operator

A · ∇ = Ax
∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z
.

The gradient of a vector function is defined as a tensor, which can be written as a
matrix (see next paragraph)

∇A =

⎛
⎜⎜⎜⎜⎜⎝

∂ Ax

∂x

∂ Ax

∂y

∂ Ax

∂z
∂ Ay

∂x

∂ Ay

∂y

∂ Ay

∂z
∂ Az

∂x

∂ Az

∂y

∂ Az

∂z

⎞
⎟⎟⎟⎟⎟⎠

The following list gives some standard rules for operations involving multiple dot
products, vector products, and derivatives. Note that differential operators act only
on the term on their r.h.s., Ac means that A is not affected by the differential opera-
tor. f is a scalar function.

A · (B × C) = B · (C × A) = C · (A × B)

A × (B × C) = (A · C)B − (A · B)C

∇( f g) = f ∇g + g∇ f

∇ · ( f A) = f ∇ · A + A · ∇ f

∇ × ( f A) = f ∇ × A + ∇ f × Ac

∇ · (A × B) = B · (∇ × A) − A · (∇ × B)

∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B

∇(A · B) = (A · ∇)B + (B · ∇)A + A × (∇ × B) + B × (∇ × A)

A × (∇ × B) = (∇B) · Ac − (A · ∇)B

ΔA = ∇(∇ · A) − ∇ × (∇ × A)

∇ · (∇ × A) = 0

∇ × (∇ f ) = 0
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3.2 Matrices and Tensors

Matrices describe the mapping of a vector into a new vector, usually of different
length and direction. A matrix is a special tensor of rank two. There are also tensors
of higher rank, which we, however, omit from the discussion.

The product of a 3 × 3 matrix M and a vector A can be written as

M · A =
⎛
⎝ Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

⎞
⎠ ·

⎛
⎝ Ax

Ay

Az

⎞
⎠ =

⎛
⎝ Mxx Ax + Mxy Ay + Mxz Az

Myx Ax + Myy Ay + Myz Az

Mzx Ax + Mzy Ay + Mzz Az

⎞
⎠ .

The elements of the resulting vector are the dot product (scalar product) of a row of
the matrix M with the vector A.

Matrices can also be used to represent systems of linear equations. The following
homogeneous system of equations

3x + 5y − 2z = 0

2x − 3y + z = 0

5x + 2y − z = 0

can be rewritten in matrix form as
⎛
⎝3 5 −2

2 −3 1
5 2 −1

⎞
⎠ ·

⎛
⎝ x

y
z

⎞
⎠ = 0 .

This system of equations has a non-zero solution, when the determinant of the
matrix vanishes

∣∣∣∣∣∣
3 5 −2
2 −3 1
5 2 −1

∣∣∣∣∣∣ = 3(3 − 2) + 5(5 + 2) − 2(4 + 15) = 0

The unit tensor is

Iαβ = δαβ =
⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ .

The dyadic product of two vectors A and B is a tensor of rank two containing the
products of the vector components, Tαβ = Aα Bβ ,

A B = T =
⎛
⎝ Ax Bx Ax By Ax Bz

Ay Bx Ay By Ay Bz

Az Bx Az By Az Bz

⎞
⎠ .
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3.3 The Theorems of Gauss and Stokes

Assume that V is a volume bounded by a closed surface S, with dS positive outward
from the enclosed volume, then

∮
S

A · dS =
∫

V
(∇ · A) dV .

If S is an open surface bounded by the contour C , of which the line element is ds,
then

∮
C

A · ds =
∫

S
(∇ × A) · dS .
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“Forty-two!”

Douglas Adams, The Hitchhikers Guide to the Galaxy

Problems of Chapter 2

2.1

λDe =
√

ε0kBTe

nee2 =
√

ε0kB

e2

√
Te

ne
= 69.0 m

√
Te(K)

ne(m−3)

2.2 (a) λDe = λDi = 69
√

3000 × 10−12 m = 3.8 × 10−3 m.
(b) Note that 3 eV =̂ 3 × 11600 K. λDe = 1.3 × 10−4 m, λDi = 1.2 × 10−5 m.

2.3 Poisson’s equation states that the curvature of the potential is proportional to
the (negative) space charge. Φ ′′ = −eni/ε0. (a) The electric field increases linearly
in the positive space charge region from E(−d) = 0 to E(0) = Emax and decreases
in the negative space charge region to E(d) = 0. Hence, there is no electric field at
the edges of the quasineutral plasma. The potential decreases in the positive space
charge region as Φ(x) = −1

2 nie(x + d)2/ε0 and reaches Φ(0) = −9.0 × 103 V.
In the negative space charge region, Φ(x) has the opposite curvature and reaches a
final value Φ(d) = −18.0 × 103 V.

d

–d

x

365
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2.4 Calculate the derivatives

Φ(r) = a

r
f (r) , Φ ′ = − a

r2
f (r) + a

r
f ′ , Φ ′′ = 2a

r3
f − 2a

r2
f ′ + a

r
f ′′

Inserting into (2.21) gives

a

r

[
f ′′ − 1

λ2
D

f

]
= 0 .

2.5 Inserting the Wigner-Seitz radius aWS = [3/(4πni)]1/3 into (2.15) gives

Γi = (4π/3)1/3

4π

e2n1/3
i

ε0kBTi
= 1

3

(
4π

3
niλ

3
Di

)−2/3

= 1

3
N−2/3

Di

2.6 Starting from the definitions S = −kB
∑

i ni ln ni and U = ∑
i ni Wi we use

the thermodynamic definition of temperature 1/T = ∂S/∂U .

1

T
= ∂S

∂λ

∂λ

∂U
=

−kB
∑

i

[
∂ni
∂λ

(λWi − ln Z) + ∂ni
∂λ

]
∑

i

∂ni
∂λ

Wi

=
−kBλ

∑
i

∂ni
∂λ

Wi + kB(ln Z − 1)
∑
i

∂ni
∂λ

∑
i

∂ni
∂λ

Wi
= kBλ .

Using
∑

i ni = 1, we obtain the result λ = (kBT )−1.

Problems of Chapter 3

3.1 Ampere’s law states that the integral of the magnetic field strength H along a
closed path equals the current flowing though the area bounded by this path,

∮
H ·

d s = I . Choose a circle of radius r centered at the axis of the wire for the path.
Then, for any r < a the current flow through this circle is the fraction I r2/a2 and
we obtain

2πr Hϕ = I
r2

a2
⇒ Hϕ = I r

2πa2
,

which increases linearly to a maximum Hϕ = I/(2πa) at r = a. For r > a the
encircled current is always I and Hϕ = I/(2πr) becomes a decreasing function of
radius.
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3.2 The current I (r) flowing through a circle of radius r < a determines the mag-
netic field

I (r) = 2π

r∫
0

r ′ j (r ′)d r ′ = 2π j0

(
r2

2
− r4

4a2

)
⇒ Hϕ = j0

(
r

2
− r3

4a2

)
.

3.3 B = 49.4 μT. (a) ωce = 8.7 × 106s−1. (b) rce = 0.22 m.

3.4 (a) Use M · r = Mr cos θ to define the angle θ . The unit vector er = r/r .

Br = B · er = μ0

4π

3r2(r · M) − r2(r · M)

r6 = μ0 M

4π

2 cos θ

r3

Bθ = |er × B| = μ0 M

4π

sin θ

r3
.

(b) Solve the last line for M , insert θ = 90◦, Bθ = 30 μT and use the Earth radius
plus about (100–200) km altitude for the ionosphere to obtain M ≈ 8×1022 A m−2.

3.5 At the magnetic equator, θ = 90◦ and the magnetic field has only a θ -
component Bθ = (μ0 M/4π)r−3. (a) Hence, dBθ /dr = −3(μ0 M/4π)r−4 and
Rc = r/3 = (RE + 500 km)/3 = 2, 290 km. (b) vR = 2v∇ B = 6W/(qr B). At
H = 500 km altitude, the equatorial magnetic field of 30 μT has decreased by a
factor [RE/(RE + H ]3 = 0.80 to 24 μT. Then vR = 0.11 m s−1.

3.6 Starting from the equations of motion

v̇x = − e

me
E − ωcevy and v̇y = ωcevx

we see that the electron velocity performs harmonic oscillations at the frequency
ωce and vx = v⊥ sin(ωcet). There is no cosine term because vx (0) = 0. Then,
vy = ωce

∫
vx dt + C = v⊥[1 − cos(ωcet)] to fulfill vy(0) = 0. From v̇x (0) = 0 we

obtain v⊥ = −E/B. Hence,

vx = − E

B
sin(ωcet) , vy = E

B
[1 − cos(ωcet)]

x = E

Bωce
[cos(ωcet) − 1] , y = − E

B
t + E

Bωce
sin(ωcet)

3.7 The differential equation for a field line with the dipole source at the origin
reads

d z

d x
= 2

3

z

x
− 1

3

x

z
.

Set z = w x to obtain dz/dx = w + x(dw/dx). Inserting into the differential
equation
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x
dw

dx
= −1

3
w− 1

3

1

w
⇒ wdw

w2 + 1
= −1

3

dx

x
⇒ 1

2
ln(w2 +1) = −1

3
ln(x)+C .

This results in w = (−1+c1x−2/3)1/2 and z = x(−1+c1x−2/3)1/2. The maximum
distance xmax of the field line is determined by z = 0, which defines c1 = x2/3

max,
hence the shape of the field line becomes

z =
√

x2/3
maxx4/3 − x2 .

Problems of Chapter 4

4.1 Let A be the normalizing factor of the velocity distribution fM(|v|). Then

0 = A
d

dv
v2 exp

(
− mv2

2kBT

)
= A

(
2v − v2 mv

kBT

)
exp

(
− mv2

2kBT

)
,

which requires that the expression in parantheses vanishes. This gives the desired
result vT = (2kBT/m)1/2.

4.2 The mean thermal velocity is the first moment of the distribution of speeds

vth = 4π

(
m

2πkBT

)3/2 ∞∫
0

v3 exp

(
− mv2

2kBT

)
dv =

(
8kBT

πm

)1/2 ∞∫
0

ye−ydy

︸ ︷︷ ︸
=1

4.3 Reduce the degree of the velocity moment by partial integration

∞∫
0

v4e−av2
dv = − 1

2a

∞∫
0

v3(−2ave−av2
)dv

= − 1

2a

[
v3e−av2

]∞
0︸ ︷︷ ︸

=0

+ 3

2a

∞∫
0

v2e−av2
dv

= − 3

4a2

[
ve−av2

]∞
0︸ ︷︷ ︸

=0

+ 3

4a2

∞∫
0

e−av2
dv = 3

8a2

√
π

a
.

Set a = m/2kBT , then the mean square velocity becomes
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〈v2〉 = 4π

(
m

2πkBT

)3/2 3
√
π

8

(
2kBT

m

)5/2

= 3
kBT

m
.

Finally: m
2 〈v2〉 = 3

2 kBT .

4.4 Let the electron momentum before and after the collision be pe and p′
e. The

scattering angle is θ and the momentum transfered to the atom pa = pe − p′
e.

Then the kinetic energy transfered to the atom, which equals the energy loss of the
electron, is (for |p′

e| ≈ |pe|)

�W = p2
e − 2pe · p′

e + p′2
e

2ma
≈ p2

e

2me
2

me

ma
[1 − cos(θ)] .

4.5 The average fractional energy loss is

〈
�W

W

〉
= 2

me

ma

1

4π

2π∫
0

dϕ

π∫
0

dθ sin θ [1 − cos θ ] = 2
me

ma

1

2

1∫
−1

(1 − x)dx = 2
me

ma
.

4.6 The average velocity v̄x is given by

v̄x = Exν
2
m,i

Bzωci

∞∫
0

[1 − cos(ωcit)]e−νm,it dt = Exνm,i

Bzωci

⎡
⎣1 − νm,i

∞∫
0

cos(ωcit)e
−νm,it dt

⎤
⎦

= Exνm,i

Bzωci

⎡
⎣1 − 1

2
νm,i

∞∫
0

(
e(iωci−νm,i)t + e(−iωci−νm,i)t

)
dt

⎤
⎦

= Exνm,i

Bzωci

[
1 + 1

2
νm,i

(
1

iωci − νm,i
+ 1

−iωci − νm,i

)]

= Exνm,i

Bzωci

ω2
ci

ω2
ci + ν2

m,i

= Ex

Bz

ωci/νm,i

1 + (ωci/νm,i)2

The solution for v̄y is analogous, except for sin(α) = (1/2i)(eiα − e−iα).

4.7 The equation of motion for an “average ion” reads

m iνm,ivi = e(E + vi × B) .
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Introducing the Hall paramater h = ωci/νm,i and using the usual convention E =
(Ex , 0, 0) and B = (0, 0, Bz), we have

vix = μiEx + hviy and viy = −hvix ,

from which we easily obtain

vix = μi Ex

1 + h2 and viy = − Ex

Bz

h2

1 + h2 .

4.8 The total current is given by the sum of all partial currents in ring segments
dI ∝ n(r)2πdr . Hence, the equivalent density for a parabolic density profile n(r) =
n0(1 − r2/a2) becomes

n̄ = 1

πa2
2π

a∫
0

n(r)rdr = 2n0

a2

a∫
0

(
r − r3

a2

)
dr = 1

2
n0 .

4.9 Ignition occurs, when the α-heating balances the losses by Bremsstrahlung and
finite particle confinement time, Pα = Pbr + PH. Noting that at each DT-reaction
one α-particle is generated, we have

Pα = η

1 − η
PDT ⇒ η

1 − η
= Qα

QDT
⇒ η = 0.154 .

Problems of Chapter 5

5.1 Start from Hϕ = I/(2πa) and pmag = B2/(2μ0). (a) Then

pmag = μ0 I 2

8π2a2 = 1.6 × 108 Pa .

Set 1 atm ≈ 1 bar, then pmag = 1600 bar. (b) Note that the magnetic pressure has to
balance the sum of electron and ion pressure

nkB(Te + Ti) = 1.6 × 108 Pa → kBTe

e
= 500 V .

The plasma temperature reaches 500 eV in the compressed pinch state.

5.2 pmag = B2/(2μ0) and β = pkin(0)/ptotal. Then B = (2μ0β
−12nkBT )1/2 =

3.6 T.
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5.3 The Alfvén velocity becomes

vA = 2.18 × 1016 m s−1 3√
2 × 1020

. = 4.6 × 106 m s−1 .

5.4 The comparison of Alfvén velocity and sound velocity gives

vA = 2.18 × 1016 m s−1 3 × 10−5

√
16 × 1012

= 1.6 × 105 m s−1

Cs = 9.79 × 103

√
0.256 ∗ 4

16
m s−1 = 2.5 × 103 m s−1 .

5.5 Use ω� = 2.7 × 10−6 s−1, r� = 7 × 108 m and ur = 400 km s−1. The figure
displays B(r)/B0 (heavy line), Br/B0 (dotted line) and Bϕ/B0 (short-dashed line).
It is found that the magnetic field in the Parker spiral decays ∝ r−2 for r < 1 AU
and ∝ r−1 for r > 1 AU.

5.6 The total change in magnetic flux is given by the integral

�Φm =
∞∫

0

[B0(r) − B0]2πrdr

= 2π B0

∞∫
0

⎡
⎣
(

1 − 2μ0kBTen0

B2
0

e−(r/a)2

)1/2

− 1

⎤
⎦ r dr

≈ −B0πa2n0β

∞∫
0

xe−x2
dx = −1

2
B0πa2n0β .
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Problems of Chapter 6

6.1 The phase and group velocities are

(a) vϕ = ω

k
= ωpiλDe√

1 + k2λ2
De

and vgr = dω

dk
= vϕ

1

1 + k2λ2
De

.

(b) For k2λ2
De � 1, the phase velocity equals the group velocity, vϕ ≈ vgr, and is

independent of k. There is no dispersion of waves of different frequency.

6.2 Start from vϕvgr = c2. Then: ω dω = c2k dk, which after integrating yields
1
2ω

2 = 1
2 c2k2 + D. Since ω is real, ω2 > 0, hence the integration constant must

be positive and can be chosen as D = 1
2 c2k2

0 > 0. Then, ω2 = c2(k2 + k2
0). This

means, there can be a cut-off frequency ωco = k0c.

6.3 (a) Start from (6.95) for the refractive index of the R-wave. The ion term can be
neglected because of ω2

pi � ω2
pe. In the electron term we use ω � ωce to arrive at

NR ≈
(

1 + ω2
pe

ωωce

)1/2

,

from which the desired limit is obtained when ω2
pe 
 ωωce. (b) Now, use the defi-

nition N = kc/ω and solve for ω to arrive at

ω = k2c2ωce

ω2
pe

and
dω

dk
= 2

ω

k
.

6.4 Use the definition nco = ε0meω
2/e2 and ω = 2πc/λ to obtain nco = 2.8 ×

1027 m−3.

6.5 The cut-off is defined by N = 0. The we have

0 = N 2 = ε = 1 − ω2
pe

ω2 − ω2
pp

ω2

resulting in ωco = 21/2ωpe.

6.6 fce = 1.4 MHz, fpe = 12.7 MHz, fuh = ( f 2
ce + f 2

pe)
1/2 = 12.8 MHz.

6.7

dω

dk
= ω

k
⇒ dω

ω
= dk

k
⇒ lnω = ln k + c ⇒ ω = vϕk .
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Problems of Chapter 7

7.1 Equate the electron retardation current (7.31) with the ion saturation current
(7.27) and set Φp = 0 for convenience. This balance defines the floating potential
Φf. Solving for the floating potential and using the quasineutrality of the unper-
turbed plasma ne0 = ni0 gives

Φf = kBTe

e
ln

[
0.61(2π)1/2

(
me

mi

)1/2
]

=
{−3.3kBTe/e (H+)

−5.2kBTe/e (Ar+)

7.2 The one-dimensional electron current to the probe is

je = −e

∞∫
vmin

vz f (vz)dvz and vmin =
(

2eUp

me

)1/2

.

Then the derivative of the probe characteristic can be written as

d je
dUp

= d je
dvmin

dvmin

dUp
= +evmin f (vmin)

e/me√
2eUp/me

= e2

me
f [v(Up)] .

7.3 Use U2 = U1 + Up to rewrite (7.46) as

−Ip = I i0 + I e0 exp

(
e(U1 − φp)

kBTe

)
exp

(
eUp

kBTe

)

Then eliminate the exponential containing U2 − φp by means of (7.46) yielding

−Ip = I i0 + (Ip − I i0) exp

(
eUp

kBTe

)
,

which by simple rearrangement gives the tanh-shape of the double probe character-
istic.

7.4 The slope of the double probe characteristic in the origin is dIp/dUp =
eI i0/(2kBTe). Then a straight line through the origin with this slope intersects the
asymptote I = I i0 at Up = 2kBTe/e.

Problems of Chapter 8

8.1 Set x = x̂ exp(−iωt) = x̂ exp(−iωR t) exp(ωI t), which has unstable solutions
for ωI > 0. Overdamped or purely growing modes have ωR = 0. The characteristic
equation for the differential equation then becomes ω2 + iωa − b = 0 with the
solution
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ω1,2 = − i

2
a ±

√
b − a2

4
.

8.2 The dielectric function reads

ε = 1 − ω2
b

(ω − kv)2
− ω2

b

(ω + kv)2
,

which is equivalent to a quartic equation with real or pairs of complex conjugate
roots. The roots are given by
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ω = ±
[

k2v2 + ω2
b ±

(
ω4

b + 4k2v2ω2
b

)1/2
]1/2

.

Two of these roots are purely imaginary and the one with positive imaginary part is
unstable.

8.3 Insert ω = ωR + iωI in (8.22) and require that the imaginary terms cancel:

0 = ωI − ωRωI

|ω|4 ωpeω
2
pi .

Noting that ωR = |ω| cos(θ) yields (8.23). Now, set ωI = |ω| sin(θ) with |ω| from
(8.23) and calculate dωI/dθ = 0 yielding tan(θ) = √

3 and θ = π/3. From ω =
[ω2

piωpe cos(θ)]1/3 exp(iπ/3) we obtain (8.24).

Problems of Chapter 9

9.1 Note that the total energy Wtot is a constant of motion. Let g(Wtot) = g( 1
2 mv2 +

qΦ) be the distribution function. Then the Vlasov equation can be written as

dg

dWtot

⎛
⎜⎜⎝∂Wtot

∂t︸ ︷︷ ︸
=0

+v
∂Wtot

∂x
− q

m
Φ ′ ∂Wtot

∂v

⎞
⎟⎟⎠ = dg

dWtot

(
+qΦ ′v − mv

q

m
Φ ′) = 0 .

9.2

1

ne0

∞∫
0

v f (1)
M (v)dv =

(
me

2πkBTe

)1/2 kBTe

me

∞∫
0

e−y dy =
(

kBTe

2πme

)1/2

.

9.3 The integral is of the same type as in the previous problem, but now the lower
bound of the integral is vc = (2e(Φ − Φmin)/m)1/2.

9.4 Follow the advice preceding (9.55).

9.5 The unstable mode has a frequency difference from the plasma frequency given
by (8.8). Then the difference between the phase velocity and the beam velocity is

v0 − vϕ = �ω

k
= ωpe

k

1

2

(αb

2

)1/3
.

With Φ̂t = m(v0 − vϕ)
2/4 and ωpe/k = v0 we obtain the desired result.

9.6 The trapping condition reads m�v2 = 4eΦ̂ for a difference between phase
velocity and beam velocity �v = (ωpe −ω)/k = �ω/k. The fastest growing mode
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has �ω = 2−4/3α
1/3
b ωpe. Then the energy density becomes

WE = ε0

2
〈E2〉 = ε0

4
k2Φ̂2 = ε0

4
k2

( m

4e

)2
�v4 .

Eliminating k = ωpe/v0 and using αb = nb/np gives the desired result.

Problems of Chapter 10

10.1 The dust charge is qd = 4πε0aΦ = 4.45 × 10−18 C which is Zd = 27.8. This
gives an initial (electric) potential energy Wpot = 1.78 × 10−17 J corresponding to
111 eV. From energy conservation, Wpot = mgLh, a maximum height of h = 883 m
is obtained.

10.2 For P → ∞, (10.25) requires ηf = ηc. Therefore, (10.26) reduces to

(μτ)−1/2 = e−(ηf+τηc) or ηf = 1

2(1 + τ)
ln(μτ) = 0.078 .

The normalized ion density becomes ni/n∞ = eτηc = e7.8 = 2440, a tremendously
high value, which demonstrates the inadequacy of assuming a Boltzmann response
for the ions.

10.3 The electron Debye length is λDe = 410 μm. At the Bohm velocity vB =
kBTe/mi, an ion has the kinetic energy miv

2
B/2 = kBTe/2. The normalized floating

potential of a sphere is eΦf/kBTe = 2.41. The collection radius then becomes

bc = a

(
1 + 2.41 kBTe

0.5kBTe

)1/2

= 2.41 a = 12.2 μm .

The dust charge is qd = (1675 × 5 × 3)e = 4.03 × 10−15 C. This gives a Coulomb
radius rC = 12 μm. Because the collection radius is much smaller than the electron
Debye length, the ion wind force is dominated by the orbit force. Since the Coulomb
radius equals the collection radius, the grazing trajectory touches the grain at the
“midnight” position, i.e., exactly opposite to the illumination direction.

10.4 At rmin and for ṙ = 0 the energy equation (10.53) reads

mi

2
v2

0 = m i

2

(miv0b)2

m2
i r2

min

− qde

4πε0rmin

0 = r2
min − b2 + 2rminrC ,

which gives the desired result.
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10.5 Consider a symmetric displacement of both particles by δr from their equilib-
rium positions. Expand the restoring force into a Taylor series, which gives a first
order term

δFr = −mω2
0δr − 2q2

d

4πε0d3
0

(2δr) .

Using the definition (10.68) for d0, we obtain the equation of motion δr̈ + 3ω2
0δr =

0, which yields the frequency of the breathing mode ωbr = √
3ω0.

10.6 Define the spring constant Dn for an interaction with a neighbor at distance
nΔ. Then,

Dn = q2
d

4πε0n3Δ3

(
2 + 2nκ + n2κ2

)
e−nκ ,

which gives the desired r.h.s. of the dispersion relation after summing over all pairs
of neighbors at ±nΔ.

10.7 The deflecting force for the i-th particle is given by

Fi = FΔ

(
ηi − ηi−1

Δ
+ ηi − ηi+1

Δ

)
.

The distance between particles i and i + 1 increases as

s =
[
Δ2 + (ηi − ηi+1)

2
]1/2 ≈ Δ

[
1 + 1

2

(
ηi − ηi+1

Δ

)2
]

,

which contains only a second-order correction to Δ that can be neglected. Assuming
a wave-like perturbation η(x, t) = η̂ei(kx−ωt) we have

−ω2m = FΔ

Δ

(
2 − e−ikΔ − e+ikΔ

)
= 4FΔ

Δ
sin2

(
kΔ

2

)
,

which gives a purely imaginary ω that attains a maximum at kΔ/2 = π/2 or Δ =
λ/2, i.e., a zig-zag arrangement of nearest neighbors.

10.8 The force between infinitely large charged planes is independent of the dis-
tance between the planes. Point-like particles in a linear chain interact via a three-
dimensional force law, which may be Coulomb or Yukawa and decays as r−2 or
faster.
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Problems of Chapter 11

11.1 A charge in a parallel-plate capacitor causes image charges on the plates. As
the charge moves, the image charges change and a displacement current flows in
the outer circuit. The exponentially growing electron avalanche generates a current
waveform of exponential shape. When the electrons move at a constant drift velocity
vd = −μe E , the current rises as I ∝ eαvdt . The current is zero again when the last
electron has reached the electrode.

11.2 (a) Inserting the separation ansatz into the diffusion equation, and dividing by
R(r)T (t), we have

1

T (t)

dT (t)

dt
− Da

R(r)

(
d2 R(r)

dr2 + 1

r

dR(r)

dr

)
= 0 .

Because each of these two terms is only dependent on t or on r , respectively, the
terms must be a constant (with the dimension of a reciprocal time), say −1/τ . Then
T (t) ∝ exp −t/τ .
(b) The constancy of the term containing R(t) can be rewritten as

d2 R

dr2 + 1

r

dR

dr
+ R

Daτ
= 0

d2 R

dx2
+ 1

x

dR

dx
+ R = 0,with x = r(Daτ)

−1/2 .

This is Bessels differential equation for J0(x).
(c) From R(a) = 0 we obtain 2.405 = a(Daτ)

−1/2 with the first zero J0(2.405) =
0. and τ = D−1

a (a/2.405)2.

11.3 Multiplying (11.17) by the applied voltage Û gives the total current Î = Û/Zb
in the two branches. Then the ratio of the current in the capacitor to that in the
RL-branch is

ÎC

ÎR+L
= iω(νm + iω)

ω2
pe

,

which is a small quantity in the given limit.

11.4 The collisionless skin depth is δcl = c/ωpe. At ne = 1017 m−3 we have
ωpe = 1.78 × 1010 s−1 and obtain δcl = 0.017 m.
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